
Sustainable Cities and Society 82 (2022) 103882

Available online 5 April 2022
2210-6707/© 2022 Elsevier Ltd. All rights reserved.

How do disparate urbanization and climate change imprint on urban 
thermal variations? A comparison between two dynamic cities in 
Southeast Asia 

Can Trong Nguyen a,b,*, Amnat Chidthaisong a,b,*, Atsamon Limsakul c, Pariwate Varnakovida d, 
Chaiwat Ekkawatpanit e, Phan Kieu Diem f, Nguyen Thi Hong Diep f 

a The Joint Graduate School of Energy and Environment, King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok 10140, Thailand 
b Center of Excellence on Energy Technology and Environment (CEE), PERDO, Ministry of Higher Education, Science, Research and Innovation, Bangkok 10140, 
Thailand 
c Environmental Research and Training Center, Technopolis, Klong 5, Klong Luang, Pathumthani 12120, Thailand 
d KMUTT Geospatial Engineering and Innovation Center (KGEO), Department of Mathematics, Faculty of Science, King Mongkut’s University of Technology Thonburi 
(KMUTT), Bangkok 10140, Thailand 
e Civil Engineering Department, Faculty of Engineering, King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok 10140, Thailand 
f College of Environment and Natural Resources, Can Tho University, Can Tho City, Vietnam   

A R T I C L E  I N F O   

Keywords: 
Climate change 
Land surface temperature 
Rapid urbanization 
Temperature extreme 
Urban heat island 

A B S T R A C T   

This study assessed the combined influences of climate change and urbanization on land surface temperature 
(LST) and surface urban heat island (SUHI) in the Bangkok metropolitan region (BKK) and Ho Chi Minh City 
metropolitan area (HCM) during 1990–2020. We found climate change evidence from trends and variations of 
temperature extremes in both cities throughout the past three decades, especially for the significant upward 
trends of nighttime temperature in HCM (0.23 – 0.3 ◦C/decade). These cities have been undergoing rapid ur-
banization, in which HCM has a higher urbanization rate with an annual growth rate of 8.03%/year against BKK 
(4.26%/year). Landscape metrics have rapidly shifted towards urban aggregation and green space fragmentation 
along with urbanization. A peer comparison shows that BKK holds a greater urban size and LST intensity, while 
HCM leads in urban growth and SUHI magnitude. These changes jointly contribute to climbing SUHI intensity, 
especially the dramatic influence of surface changes. Yet, temperature extremes also play an indispensable role in 
regulating SUHI magnitude, in which the impact in HCM is considerable compared to the effect in BKK. The 
research findings provide crucial information for both cities – where incorporation of climate change resilience 
strategies and SUHI mitigation into the master plans for livable cities are recommended.   

1. Introduction 

Since the middle of the twentieth century, Thailand’s Bangkok 
metropolitan region (BKK) and Vietnam’s Ho Chi Minh City metropol-
itan area (HCM) have seen significant urbanization, with impressive 
economic growth rates and urban population increases. Although ur-
banization facilitates intensive needs for general development, it also 
induces a slew of issues, ranging from unemployment to urban poverty, 
social division, and environmental degradation. Urbanization is inex-
tricably linked to urban agglomeration, and LULC (land use/land cover) 
changes (Estoque & Murayama, 2015; Min et al., 2018). Natural land-
scapes and agricultural fields, for example, are increasingly encroached 

upon by urban characteristics such as transport infrastructures, build-
ings, and residential areas. Physically, these urban features are made of 
low albedo materials and impermeable surfaces, which absorb more 
solar radiation and reduce evaporation. As a result, urbanization is 
frequently referred to as a major contributor to the formation of surface 
urban heat island (SUHI) (Khamchiangta & Dhakal, 2019)—a micro-
climate phenomenon that describes the differential temperature be-
tween urban and rural areas (US EPA, 2008c). SUHI has also been linked 
to residents’ discomfort, heat-related morbidity, and mortality (Lowe, 
2016; Santamouris, 2020), as well as increased energy consumption 
from cooling demand (Nguyen et al., 2021). It is especially hazardous to 
the elderly, disabled, and low-income individuals in the summer and 
during heatwaves (Santamouris, 2020). 
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With global warming and further urban development in both cities, 
the SUHI condition is likely to deteriorate. BKK, in particular, has 
expanded its urban areas to neighboring provinces and connected to the 
Eastern Economic Corridor, a national initiative spanning three coastal 
provinces east of BKK that aims to progressively transform Thailand into 
a developed country (Can et al., 2021). HCM, on the other hand, has 
grown and connected its main city to outlying “satellite cities”. By 2030, 
it is anticipated to be the next regional megacity (United Nations, 2018). 
Because they are both located on the Belt and Road Initiative (BRI) 
routes, a strategy to improve and enhance the world’s trade among 
Eurasian continental countries, urbanization in BKK and HCM will be 
significantly accelerated and more dynamic than ever before (Ascensão 
et al., 2018). These cities will gradually lose the critical self-cooling 
capacity of blue spaces (e.g., rivers, lakes, wetlands) and green spaces 
(e.g., parks, lawns, shrubland) due to replacement with man-made 
constructions (Cheng et al., 2019; Davtalab et al., 2020). In addition 
to changing the urban landscape and materials, dynamic urbanization 
also profoundly alters urban morphology, which ultimately aggravates 
or alleviates SUHI in a city depending on the city-scale, urbanization 
level, and considered time. Typically, urbanization in fast-developing 
countries induces SUHI due to the escalation of heat-absorbing mate-
rials and unplanned constructions to ensure standards on urban green 
spaces, ventilation, street width, distance between individual buildings, 
and building height. When the standards for these constructive distances 
are not satisfied, it reduces urban ventilation and sky-view factor (SVF) 
restricting outgoing radiation and circulation of cool winds into cities to 
mitigate the urban heat island (UHI), especially during nighttime (He 
et al., 2020). However, high-rise buildings can contribute to UHI miti-
gation by shading the shadowed sides during the daytime as urban trees 
do to cool down temperatures (Harun et al., 2020). 

Southeast Asia (SEA) is recognized as one of the most vulnerable 
regions to climate change (Akhtar, 2016), and climate change will 
exacerbate the SUHI impacts (Iping et al., 2019). According to IPCC 
(Intergovernmental Panel on Climate Change), the global temperature 
has increased by nearly 1.0 ◦C since the Industrial Revolution (Hen-
derson et al., 2018; National Research Council, 2012). Without reducing 
greenhouse gas emissions, the world’s temperature rise will quickly 
reach 1.5 ◦C by 2030 and 2.0 ◦C by 2060 (IPCC, 2018). It means urban 
temperature and SUHI will increase further because of the integrative 
impact of continuing urban expansion and global warming. As a result, 
the urban areas and their inhabitants will become more vulnerable to 
global and local threats. Nevertheless, Chapman et al., (2017) indicated 
in a review article that only 14% of the existing studies assessed both 
urban expansion and climate change interactions on land surface tem-
perature (LST) and SUHI. Therefore, there is an urgent need to better 

understand the relationships between climate change, urbanization, and 
the impacts on SUHI. 

To date, many studies have investigated the thermal environment 
changes in BKK (Estoque et al., 2017; Khamchiangta & Dhakal, 2019; 
Srivanit, 2012). These studies provide a wide range of knowledge from 
general increase LST induced by urbanization, the influence of urban 
morphology, and physical and non-physical factors. Similar research in 
HCM has studied both LST changes and SUHI (Quang et al., 2016; Son 
et al., 2017; Van et al., 2017). In general, the studies found upward 
trends of LST and SUHI with proportional relationships with the ur-
banization process. Nevertheless, these studies have been considered 
independently in each city using unique methodologies during different 
periods. For instance, most research was limited to inside the adminis-
trative boundaries, while urban sprawl, especially in SEA, is often not 
confined to administrative boundaries but spreads out along the trans-
port system. Therefore, it leads to inadequate assessment regarding ur-
banization for a city. The study area definition is also crucial for remote 
sensing-based SUHI intensity (SUHII) calculation, as it influences the 
estimated average temperature of rural and urban areas. 

There are two different views with regards to LST analysis; the first 
one is focused on temperature variations over a prolonged period of 
time, while the second is focused on connections between LST and 
surface characteristics at a single point in time. In addition, landscape 
measurements and urban morphology are frequently overlooked when 
the studies are carried out in HCM (Van & Bao, 2015). As a result, 
comparing the rate of urbanization and the intensity of SUHI between 
the two cities using outputs from previous studies is challenging. 
Therefore, a peer-to-peer comparison of the two cities should be con-
ducted using a consistent methodological framework, research duration, 
and focus area. It will be useful for cross-city comparisons to understand 
the SUHI of each city better, as well as to learn from the practical lessons 
of sustainable development. 

Driven by the statements and research gaps above, we implemented 
this study to bridge the knowledge gaps related to the combined impacts 
of climate change and urbanization on SUHI and consolidate the present 
knowledge pool related to factors affecting SUHI. Reanalysis data was 
adopted for climate change analysis to limit interactions and combined 
effects often found in observation data. The relevance of climate change 
to urban thermal environmental shifts was also included. Specifically, 
this study investigated the changes in temperature extremes as a typical 
aspect of climate change in the two cities during the past 30 years. The 
urban expansion and its induced impacts on landscape alterations and 
variation in LST and SUHI were then explored. Ultimately, we analyzed 
and compared how urbanization and climate change factors divergently 
contribute to the thermal environment in each city. With respect to these 

List of abbreviations and acronyms 

AI Aggregation index 
AUGR Annual urban growth rate 
BKK Bangkok metropolitan region 
GEE Google earth engine 
HCM Ho Chi Minh City metropolitan area 
LPI Largest patch index 
LSR Land surface reflectance 
LST Land surface temperature 
LULC Land use/land cover 
MBI Modified Bare soil Index 
MKA Mann-Kendall analysis 
MNDWI Modified Normalized Difference Water Index 
MOT Multiple Otsu Threshold 
NDVI Normalized Difference Vegetation Index 
NP Number of patches 

PCA Principle component analysis 
PLAND Percentage of landscape 
SEA Southeast Asian 
SUHI Surface urban heat island 
SUHII Surface urban heat island intensity 
SVM Support vector machine 
TN Minimum air temperature 
TNMEAN Average value of minimum air temperature 
TNN Minimum value of minimum air temperature 
TNX Maximum value of minimum air temperature 
TX Maximum air temperature 
TXMEAN Average value of maximum air temperature 
TXN Minimum value of maximum air temperature 
TXX Maximum value of maximum air temperature 
UHI Urban heat island 
UI Urban Index  
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cities, the research findings are expected to be useful for urban de-
velopments regarding climate change impacts, urbanization, urban 
landscape characteristics, and stresses under SUHI. Furthermore, the 
core elements controlling the SUHI of each city will be vital for regu-
lating and mitigating urban climate extremes toward more sustainable 
and livable cities. 

2. Study areas and data acquisition 

2.1. Study areas 

The focus locations in this study are Bangkok metropolitan region 
(BKK), Thailand, and Ho Chi Minh City metropolitan area (HCM), 
Vietnam. BKK and HCM are located on the Indochinese Peninsula 
mainland (Fig. 1A), the two critical nodes in the Southeast Asia (SEA) 
megacity network. BKK is Thailand’s capital and a national socioeco-
nomic magnet. With over 10.2 million dwellers (2018), BKK holds third 
place in SEA’s biggest megacities after Manila and Jakarta (United Na-
tions, 2018). It is under the tropical savanna climate in the 
Köppen-Geiger climate classification system, with the influence of sea-
sonal monsoon winds (i.e., southwest monsoon and northeast monsoon) 
(Bimaganbetova et al., 2020). There are three distinct seasons in BKK, 
the rainy (June–October), winter (November–February), and summer 
season (March–May) (TMD 2015). During the summer season, the 
average temperature is about 34 ◦C, and the highest temperature can 
reach 39–40 ◦C in April (Pakarnseree et al., 2018). 

HCM is located in the southeastern part of Vietnam in a relatively flat 
region. HCM has a tropical savanna climate affected by the wet and dry 
monsoon. The climate is divided into two seasons, wet season 
(May–November) and dry season (December–April) (Quang et al., 
2016). The average temperature during the dry season is approximately 
30 ◦C, and the highest temperature is also reached in April—known as 
the “HCM summer” (Dang et al., 2019). Although HCM is not a capital 
city, it is the most dynamic center in Vietnam regarding socioeconomic 
and entertainment activities. Development started in the 1980s under 

the economic reform of the Doi Moi policy. After this renovation policy, 
HCM has had remarkable transformations in urbanization, economy, 
environment, and society (Fig. 1B) (Fan et al., 2019). The population of 
HCM was about 8.2 million inhabitants in 2018 (United Nations, 2019). 
It should, therefore, be a megacity by 2030. 

In general, BKK and HCM are both located on a coastal plain and 
dominated by the same climate zone. Both cities are embraced by nat-
ural sceneries and have a river flowing through them, so they are both 
cooled down by these green-blue spaces, and natural atmosphere cir-
culation (i.e., sea-land breezes). Therefore, the different patterns and 
rate of urban developments between the two cities can provide valuable 
information on the imprints of urbanization on urban thermal variation. 
Doing this also requires a comparable boundary. The metropolitan re-
gion definitions of BKK and HCM are diverse and varied among different 
perspectives. For instance, most studies consider the BKK region as an 
extensive region including Bangkok and five surrounding provinces. 
However, other studies define the BKK region as a smaller provincial 
cluster with only Bangkok and the two nearest provinces in the North 
and South (Can et al., 2019; Nguyen et al., 2021). These facts also apply 
for the HCM region scope when it is investigated under diverse research 
limits and objectives. Therefore, to work towards an even comparison 
between the two metropolitan regions in this study, we designed the 
study area as a buffer zone covering 30-km from each city center. 

2.2. Air temperature data 

We used the TerraClimate dataset available on the Google Earth 
Engine platform (GEE) to obtain monthly maximum temperature (TX) 
and monthly minimum temperature (TN) in this study. TerraClimate is a 
meteorology and climatic water balance dataset at monthly temporal 
resolution and approximately 4-km spatial resolution, which is rela-
tively better than other current climatic reanalysis data (Abatzoglou 
et al., 2018). It is produced by climatically aided interpolation, which 
combines high spatial resolution data from the WorldClim dataset with 
finer temporal data from CRU Ts4.0 and the Japanese 55-year 

Fig. 1. (A) Location of BKK and HCM, and (B) Landsat imagery captured in 1990 and 2020 in BKK and HCM. Image false-color composite (RGB: SWIR2-NIR-GREEN).  
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Reanalysis (JRA55). The output of this combination method achieves 
better spatiotemporal resolution with strong validation compared to 
station-based observations. It is therefore recommended to utilize for 
long-term assessment in climate-related analyses that require 
time-varying and high spatiotemporal resolution (Artola et al., 2020). 
The typical studies standing on TerraClimate data can be found at Sus-
anti et al. (2021) and Berliana et al. (2021). In addition to spatial and 
temporal properties, we adopted the TerraClimate instead of meteoro-
logical observation data because the observation captures combined 
effects from general climate conditions and human-caused disturbances, 
here as urban expansion. In comparison, reanalysis data are generated 
from meteorological models based on natural atmospheric circulations 
rather than surface processes (Fall et al., 2010; Yaung et al., 2021). The 
reanalysis data were thus applied to limit the effects of urbanization on 
general climate considerations within this study. We acquired monthly 
maximum and minimum temperatures over the past thirty years (1990 – 
2020) as initial data before procedures of data quality and assessments 
regarding extreme climate variabilities were implemented. The data at 
each five-year milestone corresponding to land use/land cover data 
served for analysis to find associations between urbanization and 
climate variations. 

2.3. Free-cloud composite of Landsat surface reflectance 

Landsat surface reflectance (LSR) products (Collection 1, Tier 1) of 
Landsat 5 (TM) and Landsat 8 (OLI) were used for this study. LSR data 
have been atmospherically corrected using Landsat Ecosystem Distur-
bance Adaptive Processing System (LEDAPS) and Landsat surface 
reflectance code (LaSRC) for Landsat 4–7 and Landsat 8, respectively. 
Top of atmosphere (TOA) and brightness temperature (BT) were 
generated from calibration parameters. These products were then 
combined with other auxiliary data to generate LSR products. LSR 
measures the fraction of reflected solar radiation from the target objects. 
It depends less on sensors and weather conditions. Therefore, LSR is 
utilized for long-term period applications with different sensors. Annual 
clear-sky composites were aggregated from images taken within a year. 
Cloudy pixels were masked by pixel quality values, a property attached 
along with the LSR product generated from the CFMask (C-Function of 
Mask) algorithm. This study obtained images at seven time-hooks with a 
five-year interval, starting from 1990 until 2020. 

3. Methods 

3.1. Temperature extreme indices and temperature trend analysis 

Climate change contributes to increasing intensity and frequency of 
extreme climate events. Therefore, it is able to be detected by extreme 
changes over a long-term period (Knutson et al., 2017). This study uti-
lized six extreme temperature indices (i.e., “second-level indices”), 
which were annual indicators synthesized by monthly maximum and 
minimum temperatures based on the concept of Climate Change Indices 
proposed by the expert team on climate change detection and indices 
(ETCCDI) (Zhang, 2009). These temperature indices were adopted for 
temperature trend analysis as these are the most fundamental aspects of 
daytime and nighttime temperatures. Firstly, the original data went 
through a set of cleaning procedures presented by Sein et al., (2018). TX 
and TN were checked for internal consistency, temporal outliers, and 
data homogeneity. After passing through these quality tests, six 
temperature-related indices were calculated (Table 1). 

The climate trends were then analyzed using Mann-Kendall analysis 
(MKA) (Kendall, 1975; Mann, 1945). Finally, the trend magnitude was 
quantified by the Thiel-Sen slope (Sein et al., 2018). The MKA aims to 
test whether a dataframe has a statistically monotonic trend throughout 
time, even nonlinear movement. Ordinary linear regression is inter-
pretable and straightforward, but it strictly requires data uniformity of 
normal distribution. Yet, the MKA is a nonparametric method, which is 

applicable for even a free-distribution dataframe. Hence, the MKA is 
broadly applied in climate studies to recognize significant climate shifts 
(Güçlü, 2018). 

3.2. Mapping land use/land cover using support vector machine classifier 

3.2.1. Preprocessing 
Firstly, yearly free-cloud composite images were generated at seven- 

time hooks starting from 1990 with a five-year interval on Google Earth 
Engine Platform (GEE). Cloud and cloud shadow pixels were masked out 
for each image using bit-mapped values within the quality assessment 
(QA) band (Foga et al., 2017). An annual cloudless image was then 
composited from the images within a year based on the median oper-
ator. Subsequently, the composite images were cropped following the 
buffer zones defined for each city as presented in Section 2.1. 

3.2.2. Automatic sampling 
Training data for satellite image classification is often from the field 

survey, which assists in collecting LULC locations by GPS device. It is a 
costly mission, especially when we have several remote study sites. 
State-of-the-art studies have applied the “show historical imagery” tool 
on Google Earth to acquire samples for training and validation in the 
past (Kostianoy et al., 2020). It has time constraints because truth point 
sets are manually marked, and it needs to be updated for another year. 
This is an arduous task when mapping time series data for a few decades. 

For these reasons, we proposed an automatic sampling approach 
based on the image’s data itself and the “confident areas”, zoned by 
spectral indices and thresholding methods. Firstly, we calculated four 
spectral indices representing the primary land cover types. Specifically, 
vegetation is able to be detected by normalized difference vegetation 
index (NDVI) (Tucker, 1979). Water bodies were extracted by modified 
normalized difference water index (MNDWI), introduced by Xu (2006), 
as an optimal solution to identify water surfaces, especially in urban 
areas. Bare soil and built-up features are often misclassified because they 
have similar spectral characteristics (Diep et al., 2019). Therefore, bare 
soil was extracted by modified bare soil index (MBI), as introduced by 
Nguyen et al., (2021) for a tropical region like SEA. To detect urban 
features, we applied urban index (UI) by a normalized ratio between 
Shortwave Infrared band 2 (SWIR2) and Near Infrared (NIR) (Kawa-
mura et al., 1996). All the equations of spectral indices are shown as 
follows: 

NDVI =
NIR − Red
NIR + Red

(1)  

MNDWI =
Green − SWIR1
Green + SWIR1

(2)  

MBI =
SWIR1 − SWIR2 − NIR
SWIR1 + SWIR2 + NIR

+ f (3) 

Table 1 
Temperature extreme indices adopted in this analysis.  

Temperature 
index 

Definition Unit 

TNMEAN Annual average value of monthly minimum 
temperature 

◦C 

TNN Annual minimum value of monthly minimum 
temperature 

◦C 

TNX Annual maximum value of monthly minimum 
temperature 

◦C 

TXMEAN Annual average value of monthly maximum 
temperature 

◦C 

TXN Annual minimum value of monthly maximum 
temperature 

◦C 

TXX Annual maximum value of monthly maximum 
temperature 

◦C  
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UI =
SWIR2 − NIR
SWIR2 + NIR

(4)  

where, Green is visible green wavelength (0.52–0.60 µm); Red is the 
visible red wavelength (0.63–0.69 µm); NIR is Near Infrared (0.76–0.90 
µm); SWIR1 and SWIR2 are Shortwave Infrared bands which stand from 
1.55 to 1.75 µm and 2.09 to 2.35 µm on the electromagnetic spectrum, 
respectively; f is an additional factor (f = 0.5). 

Subsequently, the confident land cover areas were identified to 
construct binary images by four spectral indices using a conventional 
decision tree model and threshold values. The threshold values were 
obtained from Multi-Otsu Thresholding (MOT – Otsu, 1979). Isolated 
pixels and small groups of pixels were eliminated to limit potential noise 
effects and increase confidence. The binary images were then adopted as 
the background for random pixel selection. The sample size for each 
land cover was determined in a range from the minimum number of 
actual pixels up to 2,000 pixels, which is equal to five times the samples 
for a limited population suggested by the Taro Yamane equation (~400) 
(Yamane, 1967). This sample size is considered sufficient for classifying 
an approximate 2,800-km2 region compared to field data and manual 
sampling. 

3.2.3. Support vector machine classification 
Machine learning-based classifiers (MLC) have gained recognition in 

their roles as LULC classifiers in the last few years. Among the MLC, 
random forest (RF) and support vector machine (SVM) are the two most 
applied classifiers. Noi et al. (2018) stated that classification accuracy 
using SVM exceeds RF, and is less dependent on sample size. It was 
proved through our trial classifications that urban areas generated by 
SVM were more stable over time compared to the RF outputs. Thus, we 
decided to apply SVM to classify the LULC maps for the study sites. The 
classifier was trained for 70% of the truth points, whereas the remaining 
dataset was used to validate and assess the classification accuracy. There 
were six bands (visible bands, NIR, SWIR1, and SWIR2) and four spectral 
indices contributing to model training as predictor variables. The values 
at reference pixels were then extracted to train the classifier and eval-
uate model performance. Finally, the classification was evaluated by 
estimating overall accuracy and kappa coefficient commonly used to 
assess remote sensing classification (Congalton & Green, 2009). 

3.3. Landscape metrics and urbanization assessment 

This study applied landscape metrics representing fragmentation and 
aggregation of urban features and green space patches to evaluate and 
compare the urbanization process between the two cities. Specifically, 
we selected four landscape metrics consisting of a percentage of land-
scape (PLAND), aggregation index (AI), largest patch index (LPI), and 
number of patches (NP) for our analyses (McGarigal et al., 2012; 
Table 2). 

Urbanization was basically assessed by changes in urban density and 
annual urban growth rate (AUGR). Urban density is the percentage of 
the urban area in the total area. AUGR is an indicator for evaluating 
urbanization speed, which measures the yearly average urban gain ratio 
(Hong Diep et al., 2021). On the other hand, urbanization patterns were 
analyzed by the urban landscape analysis tool (ULAT) (Parent, 2009). 
The tool classifies the urbanization areas into three classes corre-
sponding to three urbanization patterns of infill, extension, and leapfrog 
forms. Infill urbanization is a new urban area just emerging among the 
old urban areas. The extension form is a new urban area developed at the 
fringe of the already developed urban areas. In contrast, the leapfrog 
pattern develops separately outside urban areas in the rural areas. 

3.4. Estimating daytime LST and SUHI intensity 

We obtained daytime LST (at 10:30 am local time) using a widely 

applied algorithm, which converts DN values to LST by calibrating 
brightness temperature (TB) using NVDI-based land surface emissivity 
(LSE) (Eq. (7)). Firstly, vegetation fraction (FVC) was calculated by 
calibrating specific NDVI pixel by NDVI values of fully dense vegetation 
(NDVIV) and completely bare soil surface (NDVIS) (Eq. (5)) (Carlson & 
Ripley, 1997). Practically, many studies used minimum NDVI and 
maximum NDVI values to represent NDVIS and NDVIV. Yet, the mini-
mum NDVI value belongs to the water surface instead of bare soil, and 
the FVC may be overestimated. Therefore, NDVIS and NDVIV were 
defined to be equal to 0.2 and 0.86, respectively (Ermida et al., 2020). 
Then, LSE was estimated by empirical equations using FVC for Landsat 
TM and OLI (Eq. (6.1) and 6.2) (Son & Thanh, 2018; Van De Griend & 
Owe, 1993). 

FVC =

(
NDVI − NDVIS

NDVIV − NDVIS

)2

(5)  

εTM = 0.004FVC + 0.986 (6.1)  

εOLI = 0.00149FVC + 0.986481 (6.2)  

TS =
TB

1 + (λTB/ρ)lnε − 273.15 (7) 

Table 2 
Landscape metrics adopted in this study.  

Indicator Description Unit 

Aggregation index 
(AI) 

AI describes the agglomeration of individual 
landscape patches into a single clump/compact 
patch. It is calculated by number of like adjacence 
involving the corresponding class, divided by the 
maximum possible number of like adjacence, and 
multiplied by 100. 
Value range: 0 < AI < 100 
AI receives 0 when the considered path is totally 
disaggregated (or an independent patch). It 
increases the AI value when the patch is 
increasingly aggregated. AI achieves maxima of 
100 when the patch is maximum aggregated (or a 
single, compact patch). 

Percent 

Largest patch 
index 
(LPI) 

LPI presents the percentage of the homogeneous 
largest patch against the total landscape. It is 
estimated by the size (m2) of the largest patch, 
divided by total landscape area (m2), and 
multiplied by 100. 
Value range: 0 < LPI < 100 
LPI is approximately 0 when the largest patch of a 
landscape is too small (or the majority of this area is 
occupied by other landscapes). It increases 
proportionally with size of the largest patch index 
and reaches 100 when the entire area is covered by 
this single patch and this patch is also the largest 
patch. 

Percent 

Number of 
patches 
(NP) 

NP is the quantity of single/independent patches of 
a specific landscape type. It represents the 
fragmentation of a landscape. A fragmented 
landscape is supposed to have a larger NP compared 
to the aggregated landscape because the patches 
combine into a single patch. 
Value range: NP ≥ 1 

None 

Percentage of 
landscape 
(PLAND) 

PLAND is the proportion of a specific landscape 
type (class) against total landscape area. It is 
estimated by total area of the considering class (m2) 
divided by total landscape area (m2) and multiplied 
by 100. 
Value range: 0 < PLAND < 100 
PLAND is 0 when the considering class does not 
exist in this landscape. It increases when this class 
increases its covering area, and PLAND reaches 100 
when the whole landscape is occupied by this class. 

Percent 

*Notes: Suffixes “_U” and “_G” are added after each index to represent corre-
sponding metrics for urban features and green spaces, respectively. 
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where, FVC is vegetation fraction; NDVIS and NDVIV are vegetation 
index of fully dense vegetation and bare soil, respectively; εTM and εOLI 
are land surface emissivity for Landsat TM and Landsat OLI; TS is land 
surface temperature (◦C); TB is brightness temperature in Kelvin; λ is 
wavelength of emitted radiance (i.e., Landsat TM is band 6, λB6=11.5 
µm, and Landsat OLI is band 10, λB10=10.89 µm); ρ = hc /σ, with 
ρ=1.438×10− 2 Mk; ε is the land surface emissivity. 

The surface urban heat island (SUHI) region was identified as a re-
gion with LST higher than an equation of average LST (µ) and standard 
deviation (σ) (Eq. (8)) (Wemegah et al., 2020). SUHI intensity (SUHII) 
was then calculated as the difference between a SUHI pixel and the 
average LST of rural areas (Eq. (9)). 

LST > μLST + 0.5 σ (8)  

SUHII = LSTSUHI − LSTRural (9)  

where, µLST is scene average LST; σ is standard deviation; SUHII is sur-
face urban heat island intensity; LSTSUHI is a specific pixel where urban 
heat island phenomena occur; LSTRural is average LST of the non-SUHI 
region. 

3.5. Assessing effects of climate change and urbanization on SUHI 

A bivariate correlation analysis and linear regression analysis be-
tween landscape metrics, extreme climate indices, and SUHII was 
implemented to explore influenced levels of considered variables to 
SUHI. The influenced level was quantified by the slope (β) magnitude 
from regression analysis, while the propensity of a variable was deter-
mined by the Pearson correlation coefficient (R). Additionally, we 
adopted principal component analysis (PCA) to explore the critically 
typical elements in each city, which may be eliminated by the strict 
statistical criteria of regression, such as meaningful level and multi-
collinearity. Yet, this elimination may lead to insufficient assessment 
from potential contributors. On the contrary, PCA solely reduces data 
dimension while it still respects individual contributions. PCA is 
particularly useful when working with a “wide” dataset, which observes 
many variables for each sample. Therefore, PCA is increasingly being 
used in environmental research as part of a modern school of analysis, 
for example, Awobona et al., (2020) and Loc et al., (2021). 

4. Results 

4.1. Trends in temperature and its extremes 

Average temperature trends in BKK and HCM are shown in Fig. 2. 
The average mean, maximum, and minimum temperatures (Tmean, 
Tmax, Tmin) in BKK are generally higher than those in HCM. These 
parameters are significantly different between the two cities (P<0.01 
obtained by t-test analysis). Although there are fluctuations over 30 
years in both cities, the general trend is increasing average tempera-
tures. More explicitly, the temperature in HCM is significantly rising 
(P<0.1). Whereas the warming effect in BKK is slightly positive 
compared to that in HCM, and this trend is insignificant over the 
observed period (P>0.1) (Fig. 2-A). 

The Mann-Kendall test for temperature extremes indices revealed a 
similar tendency of rising for most indices except Minimum of TX (TXN) 
(Fig. 2-B). The maximum temperature indices, TXMEAN and TXX, have 
increased by less than 0.05 ◦C per decade for BKK and HCM. The 
increased magnitude of TX indices is not much different between the two 
locations. In contrast, the exacerbation in minimum temperature indices 
is relatively significant, especially for HCM (P<0.05). The increased 
magnitude and temperature difference between BKK and HCM, assessed 
by the magnitude of the trend slope, is undoubtedly greater. In BKK, the 
Min-based indices increased by 0.06 ◦C per decade (TNN) and 0.12 ◦C 
per decade (TNMEAN and TNX), respectively. These numbers are double 
in HCM with 0.23 ◦C per decade and 0.24 ◦C per decade for TNMEAN 
and TNN, respectively. The warmest trend was found in HCM relating to 
TNX, in which the increase was up to 0.3 ◦C per decade. During the last 
30 years, BKK and HCM have shown climate change signals through the 
warming trends. The nocturnal warming is more obviously observed 
against daytime changes. 

4.2. Urban expansion and alterations in landscape metrics 

The general LULC classification obtained by the proposed classifi-
cation framework with SVM classifier on Landsat imagery all achieved a 
high accuracy level, with an overall accuracy higher than 95% and 
Kappa coefficient greater than 0.94, which are suitable for urbanization 
analyses. The spatial distribution of urban areas in the two cities every 
five years starting from 1990 and their major urban expansion patterns 
are depicted in Fig. 3. The cities have experienced a continuous urban 
expansion over time. In 1990, BKK held 453.5 km2 of built-up areas, 
which is ten times larger than the built-up area in HCM (43 km2). The 
urban density at this base time was only 1.52% and 16.1% for HCM and 

Fig. 2. Mean temperature trends in Bangkok and Ho Chi Minh City during 1990–2020. (A) Annual mean temperature and linear regression (dashed lines) show 
increasing trends. (B) Sen’s slope presents the changing magnitude for temperature-based extreme indices. Symbol (*) indicates statistical significance. 
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BKK, respectively. The disparities in urban scale and urban density have 
been rapidly narrowed across each subsequent period. At the end of the 
period, the gap in urban areas remained only 1.5 times, equivalent to 
1,052.5 km2 in BKK versus 682.5 km2 in HCM. The urban density in 
HCM accounted for 10.1% in the middle of the period and then achieved 
24.1% in 2020. BKK is always bigger than HCM regarding urban size, 
with its urban density of 20.4% (2005) and 37.4% (2020). 

The total increased urban land throughout 30 years in HCM visibly 
expanded to about 639.5 km2 (Fig. 3B), equal to an average AUGR of 
48% per year. The urbanization was relatively rapid in the first 15 years, 
approximately 14.6–20% per year. The average AUGR then slowed 
down to a level of 5.2–8.9% per year. The primary urbanization form in 
HCM was an extension (70.7%), which tended to expand dramatically 
within 10 km and towards the northeast of the city center (Fig. 3D). The 

Fig. 3. Urban areas expanded over 1990–2020 in (A) BKK and (B) HCM. Urban expansion patterns throughout 30 years in (C) BKK and (D) HCM.  

Fig. 4. Variations in average landscape metrics over the years for urban features and green spaces in BKK and HCM. For both cities, green spaces have declined in 
proportion, aggregation, and patch size, while the number of patches has increased. Unit of each indicator is shown in Table 2. 
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leapfrog pattern is mainly located outside the city core from 10 km 
outwards, accounting for 28.1% of the total urbanized area. Whereas the 
infill pattern humbly occupied 1.2% in the HCM city center area. 

In BKK, the AUGR was relatively stable at a level of 4.6% per year, 
and it developed equally throughout the period (1.1–8.6% per year). 
The main urbanized form in this city was still an expansion pattern based 
on the developed areas (77.8%) that spanned most distances and di-
rections (Fig. 3A-C). The leapfrog pattern area was one-half of the 
number held by HCM. It is highlighted that the infill urbanized pattern 
in BKK accounted for a relatively significant fraction of 8.1% of the total 
increased urban area. 

The changes in landscape metrics (i.e., urban features and green 
spaces) during the urbanization process were then investigated and 
shown in Fig. 4. The percentage of the landscape for urban features 
(PLAND_U), representing the total urban area in both BKK and HCM 
tended to increase gradually. In contrast, the percentage of the land-
scape for green spaces (PLAND_G) showed a corresponding downtrend. 
At the end of the period, green spaces remained 61.1% and 48.3% in 
HCM and BKK, respectively. The landscape agglomeration was evalu-
ated by the aggregation index (AI), while the landscape fragmentation 
was investigated by the largest patch index (LPI) and the number of 
patches (NP). These metrics together revealed that there was fragmen-
tation and complexity for green spaces in these places. More explicitly, 
the green spaces aggregation (AI_G) and the largest patch index (LPI_G) 
gradually fell, and the number of patches (NP_G) climbed over time. The 
green spaces in BKK were mainly composed of narrowed areas and 
divided into smaller separated patches. A similar process also occurred 
for the urban green spaces in HCM. Yet, the fragmentation of green 
spaces in this city is less complex compared to that in BKK. The disparity 
in terms of urban agglomeration between these two cities was also 
observed. The number of urban patches (NP_U) in HCM has been higher 
than the number of patches in BKK since 2015. HCM exceeded BKK in 
the degree of urban aggregation (AI_U), where this index in HCM has 
been higher than that in BKK since the early 1990s. The landscape 
metrics of urban features and green spaces revealed a general process of 
urban agglomeration and green space fragmentation, in which BKK 
stands out for its urban areas fragmented by complex urban green 
spaces. 

4.3. Escalation of LST and SUHI 

The remote sensing-based estimation found that the two cities’ 

surface temperatures have increasingly warmed. In HCM, the LST is 
generally warmer, about 0.15 ◦C per year, which is relatively higher 
than the annual increase in BKK estimated through 30 years (0.126 ◦C 
per year). When considering only LST, the BKK surfaces were generally 
hotter than that in HCM for every observation period. The disparity in 
average surface temperature frequently remained at a level of less than 
0.5 ◦C. Yet, the maximum LST at some specific locations in HCM 
exceeded the values observed in BKK. These observations have been 
detected since 2005 (Fig. 5A) with anticipated linking to considerable 
urban development in terms of LPI shown in Fig. 4 above. For example, 
the max LST reached 39.8 ◦C in HCM, while the hottest pixel found in 
BKK in 2020 was only 36.8 ◦C. 

The escalation of microclimate phenomena was obviously revealed 
through SUHI increases (Fig. 5B). The SUHI also shows an upward 
movement from 1990 to 2020, averaging 0.086 ◦C per decade and 
0.46 ◦C per decade for BKK and HCM, respectively. The SUHI exacer-
bation in HCM is more significant than in BKK (Linear regression coef-
ficient: R2=0.76, P<0.01). Notably, the SUHII in HCM was lower than in 
BKK during the first 15 years; however, the situation has been in reverse 
since 2015. The SUHII of HCM has been approximately 0.55–0.69 ◦C 
higher compared to the microclimate magnitude in BKK. The max SUHII 
in the two cities has significantly risen and hit the highest record in 
2020, at 9.8 ◦C (BKK) and 13.2 ◦C (HCM). 

4.4. Association between SUHI and its controlling factors 

Fig. 6 shows comprehensive matrices of correlation and regression 
slope indicating the associations and influences of the landscape metrics, 
urbanization, and temperature extreme indices on SUHII parameters (i. 
e., Average SUHI – UHIM, Maximum SUHI – UHIX, and Minimum SUHI 
– UHIN) in BKK and HCM. The relations of considered factors with SUHII 
parameters were roughly similar in HCM, but the effects were only 
intensive for UHIX and UHIN in BKK. The SUHII parameters on both BKK 
and HCM were significantly associated with urban agglomeration and 
urbanization, reflecting highly positive correlation coefficients (R) and 
slope values for LPI_U, NP_U, and PLAND_U. The second factor closely 
related to the SUHI rise was the shrinking and fragmentation of green 
spaces. The green space fragmentation-related metrics such as AI_G, 
LPI_G, and PLAND_G were highly negative relationships. More specif-
ically, the green space changes in BKK are supposed to have much more 
impact on the SUHI severity than in HCM, presented by significant 
connections with green space metrics. For instance, the association 

Fig. 5. Boxplots present changes of (A) LST and (B) SUHII in BKK and HCM over 30 years.  
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between LPI_G and UHIX in BKK is a markedly high β=0.82. In contrast, 
the correlation coefficient was at a moderate level of β=0.54 in HCM, 
and even insignificant through the regression analysis. 

Regarding temperature extremes, although the SUHII in both cities 
has been more or less heated in line with the global warming trend as 
shown via positive associations, it varies widely in both cities. It is 
noteworthy that the increase in SUHII in HCM is more closely connected 
to climate change in terms of temperature severity than in BKK, 
particularly for TNN, TNX, and TNMEAN (β≥0.52). The lowest 

nighttime temperature (TNN) increase in HCM is strongly proportional 
to the SUHI intensity (β≥0.73). The daytime temperature (TXMEAN) 
also greatly contributes to warming the SUHI (β≥0.56). Whereas the 
temperature aspect of climate change impacts SUHI, in BKK it is mod-
erate and low for most indicators, with β ≤ 0.31. 

The PCA results for the individual city were summarized in Fig. 7 
with the first two dimensions (Dim). Specifically, about 57.2% and 
60.6% of variance are explained by the first dimension (Dim1 or PC1) 
for BKK and HCM, respectively. The PC1 was retained to represent the 

Fig. 6. Heatmaps show correlation coefficients and trend magnitude between landscape metrics and temperature extremes indices against SUHI parameters in BKK 
and HCM. Color tone presents trends of correlation analysis. Red and blue are proportional and inversely proportional correlations; the number is slope magnitude 
from linear regression. Symbol (*) indicates a statistically significant contributor (P < 0.1) to SUHI through regression analysis. 

Fig. 7. Principal component analysis shows contributions of the latent variables into the first two components for (A) BKK and (B) HCM. The variable vectors 
approaching horizontal and vertical axes in turn contribute to PC1 and PC2. The vector length and color intensity are proportional to the contribution. 
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key elements influencing the SUHI in each city. Among the total 14 
considered elements in BKK, eight elements significantly contribute to 
the formation of PC1, in which vectors approach the horizontal axis, 
including PLAND_U, PLAND_G, NP_U, NP_G, LPI_U, LPI_G, AI_G, and 
TXMEAN (Fig. 7A). Similarly, the PC1 in HCM is relatively similar to the 
PC1 in BKK, constructed by nine variables (Fig. 7B). However, the LPI_G 
is replaced by the other two climate change representing indices 
(TNMEAN and TNN). 

5. Discussion 

5.1. Rapid urban expansion along with climate change facilitate SUHI 
aggravation 

BKK and HCM are dynamic cities from socioeconomic perspectives. 
A comparison between these two cities in various aspects was performed 
to illustrate the urbanization and climate change effects on SUHI. The 
research findings revealed that LULC changes are closely linked to 
changing thermal environments in both places. This influence even ex-
ceeds the impacts of climate change through warming severity. The ef-
fects of LULC changes through urban expansion and landscape metric 
alterations on LST escalation and SUHI formation found in this research 
were in line with those reported in other cities (Estoque & Murayama, 
2017; Haiting et al., 2017). Specifically, the urban sprawl with shifts in 
landscape metrics is still the most significant contributor to SUHI 
severity against climate change, as indicated in the case of BKK, where 
climate change only has weak impacts (Fig. 6). Urban expansion is a 
principal LULC change in urban areas, which is also one of the major 
reasons for climate change by enhancing the emissions of greenhouse 
gasses into the atmosphere (Kachenchart et al., 2020). Urbanization 
directly leads to urban heat islands (i.e., surface and air UHI) by 
changing surface characteristics, anthropogenic heat, and alternations 
in urban morphology. Additionally, climate change also stimulates 
urban heat islands by variations in weather conditions, such as incoming 
radiation, cloud cover, and wind speed. Ultimately, urban growth and 
climate change jointly enhance urban heat islands (Chapman et al., 
2017). 

Both cities have also been confronting a relatively similar warming 
trend during the daytime, which is deemed to be influenced by general 
control from the same climate pattern and atmospheric circulations, as 
well as the comparable position of coastal deltas (as introduced in Sec-
tion 2.1). Yet, the great dissimilarities in urban growth dynamics led to 
the big differences in the local heat environment, especially during 
nighttime, as prominent evidence for climate change in HCM. Higher 
nighttime temperature in HCM is also a vital sign that it has a problem 
with urban morphology since urban morphology is a main controlling 
mechanism for nighttime temperature. The different urbanization levels 
between BKK and HCM may result in significant variations in urban 
morphology, related building factors (e.g., sky-view factor, ventilation, 
and urban shading), and SUHI ultimately. The disparity in urban 
morphology should be further investigated to illuminate its impacts on 
SUHI in these cities. 

In BKK, the temperature is stimulated by an extensive urban size with 
a lack of green and blue spaces, while SUHI in HCM is promoted by both 
rapid urbanization and climate change. The first component of PCA is to 
figure out the impacts of urban growth as significant core variables 
(Fig. 7). BKK holds a more extensive metropolitan scale, and the gap in 
urban scale between the two cities has been gradually narrowing. On the 
other hand, HCM is a more dynamic city with rapidly alternating urban 
areas and landscape metrics; the AUGR always exceeds BKK, especially 
in the early 21st century. Simultaneously, the dynamics of LULC in HCM 
are exacerbated by climate change through global warming, causing the 
city to heat up significantly. As a result, the magnitude of SUHI in HCM 
has been greater than in BKK, despite the fact that BKK has a higher LST. 

It should be noted that the characteristics of the thermal environ-
ment in each city imply different meanings and considerations for 

citizens and urban managers. The higher LST in BKK is possibly linked to 
thermal comfort and power usage for cooling demand (Nguyen et al., 
2021). In contrast, inhabitants in HCM are said to be more sensitive due 
to the increased intensity of SUHI. For example, when traveling around 
the city amid enormous temperature changes, they may get heatstroke 
and heat shock. Furthermore, the impacts of climate change are much 
more likely to increase this. It also suggests an urgent study direction in 
HCM on heat-related vulnerability for the residents under various sce-
narios, which would be particularly useful for national public-health 
initiatives. 

5.2. Implications for long-term strategies 

BKK and HCM have been experiencing rapid urbanization and SUHI 
formation. The thermal environment situation is expected to worsen as 
the cities continue to develop, exacerbated by the hot-humid tropical 
climate and climate change escalation. Thus, an insightful understand-
ing and long-term strategies to mitigate SUHI for each city toward sus-
tainable development are essential. Typically, the classic interventions 
to mitigate SUHI are to improve urban ventilation by ensuring the sky- 
view factor for canyons, to optimize natural cooling capacity through 
green and blue spaces, and to apply new materials in urban areas. Yet, 
the same measures may not be suitable for both cities since each city has 
its unique characteristics. BKK is in the mature stage, while HCM is just 
in the preliminary stages of development. 

In particular, urbanization in BKK is presently dominated by exten-
sion and infill patterns with high urban density in the inner districts 
(Section 4.2). Thus, public green space plans, such as urban forests and 
large public parks, in these areas are difficult to implement. Green in-
frastructures such as integrated green spaces (e.g., rooftop garden, green 
wall, private garden, artificial wetland), and technical solutions (e.g., 
cool material roof, permeable pavement, cool material pavement) may 
be more appropriate (US EPA, 2008a, 2008b). The infill urbanization 
form is deemed to be hotter than the other two patterns (Zhang et al., 
2021). Therefore, constructions between already urban areas need to be 
carefully considered as to whether they should be for construction or for 
green space conservation. These areas do not necessarily need to be 
planned as parks, but urban agriculture is also a solution worth 
considering for urban biodiversity and food security. 

In HCM, the primary process is rapid urban expansion, which 
continuously expands the urban areas by extension and leapfrog pat-
terns at urban fringes and towards connecting satellite cities (Fig. 3-B). 
Since early 2021, the three eastern districts of the city have been merged 
into one city directly under HCM, the first exceptional case in Vietnam. 
It will be expected to be more increasingly dynamic and expand in the 
future. At this stage, when the urban scale and new urban areas are still 
under control, urban governments should have a long-term vision to-
ward sustainable urban development instead of “monotonic de-
velopments” that only focus on urban expansion and industrialization. A 
few issues should be noted, especially in the emerging urban areas of 
HCM, which are green space conservation and urban morphology 
standards. The intensive differences in nocturnal temperature in HCM 
compared to BKK (Section 4.1) are a critical sign of urban morphological 
problems. One of the biggest problems in HCM is the lack of synchronous 
construction leading to traffic congestion, adjoining houses, dense 
buildings, and urban slums. The compact urban areas prevent heat 
advection away from the city by ventilation, trapping it inside the urban 
infrastructures, and exacerbating SUHI (US EPA, 2008c). Therefore, 
spatial planning and urban morphology in this city can gradually 
eliminate current problems related to heat environment degradation 
and improve the city’s appearance. Simultaneously, HCM should 
incorporate climate change into the master plan as an important chal-
lenge to address throughout the development. Subsequently, there is 
appropriate design planning, not only for temperature changes and 
SUHI formation but also for the risk of sea-level rise, urban inundation, 
and tropical storms. 
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5.3. Methodological implications 

In addition to its implications for urban and green space planning in 
the two cities, this study also opens up methodological implications for 
prompt LULC extraction as well as direction for improving LST predic-
tion in future research. 

5.3.1. Potential for automatic classification 
The classification obtained from our proposed framework exceeds 

the high accuracy level (Section 4.2). It disclosed another option for 
automatic classification using GEE besides the current automatic ap-
proaches: index-thresholding extraction (Capolupo et al., 2020; Inman 
& Lyons, 2020) and supervised-based classification (Quintero et al., 
2019; Xie et al., 2019). Our classification framework consisted of two 
parts, a self-automatic sampling procedure and a machine 
learning-based classifier of SVM. This sampling method is able to 
overcome the limitation of training data availability from MODIS 
products (presented by Xie et al., 2019), especially during the period 
before 2000. Whereas the supervised classification of SVM can improve 
the classification capability compared to the thresholding method, it is 
also replaceable with other MLC to enhance the classification for diverse 
applications. 

5.3.2. Way forward for improving urban LST prediction 
This study showcases the potential impacts of urbanization and 

climate change jointly in urban LST and SUHI exacerbation. Yet, the 
current predictive studies on LST that simulate the future LST are pri-
marily based upon urban expansion and LULC change scenarios (Fir-
ozjaei et al., 2018; Mumtaz et al., 2020). Specifically, associations 
between LULC indices, urban patterns, and LST magnitude are investi-
gated, and they are then adopted to predict LST magnitude. Although 
some auxiliary factors were also concerned with LST prediction 
research, e.g., slopes, elevation, accessibility to roads, and cool surfaces 
(Nurwanda & Honjo, 2019), these elements only support urban pre-
diction. Furthermore, most of these studies ignored climate change 
impacts in LST prediction. It leads to insufficiently evaluating 
heat-related vulnerability in urban areas, while climate change also 
noteworthily contributes to LST and SUHI escalation as presented in our 
analysis (Section 4.4). Therefore, climate change impacts should be 
included in future predictive models to adequately quantify the increase 
in LST against the backdrop of increasingly pronounced and intense 
effects of climate change. 

6. Conclusions 

Previous studies on SUHI mainly focus on local impacts from LULC 
changes, urbanization, and surface alterations. In this study, we 
included climate change impact as an additional element in our 
assessment of SUHI in addition to urban expansion with shifts in land-
scape metrics to see how these aspects associate with thermal environ-
mental changes. Each aspect was addressed in turn and the dynamics of 
each city were then revealed. To encapsulate, this study reached the 
following salient conclusions: in general, both BKK and HCM were 
considered two of the most dynamic cities in SEA in terms of urban 
development with dramatic transformations in urban areas, urbaniza-
tion patterns, and landscapes, especially from urban vegetation shrink-
ing. BKK has led in city size and urban density with a consistent growth 
rate, while HCM is a serious competitor with a rapid growth rate, 
particularly in the last decade. This made it possible to progressively 
close the distance between the two cities. Based on the results of tem-
perature extremes, these cities have experienced the effects of climate 
change, which are particularly noticeable at night. Simultaneously, the 
degradation of the urban thermal environment was also confirmed via 
escalations of both surface temperature and SUHI. This aggravation was 
found to be mainly driven by urbanization-related elements and climate 
change as a background climate factor. Yet, it is prominent in HCM and 

has a significant contribution to local climate change. HCM is hence 
supposed to be a more vulnerable city due to combined impacts. 

This study considered climate change as a return effect further 
amplifying the urban thermal environment, even though the forward 
effect of urbanization on near-surface temperature is widely accepted. 
This study also highlighted planning implications related to the unique 
characteristics of each city. The integrated solutions for combining 
green space types and high albedo materials in urban landscapes should 
be considered in the dense urban areas of BKK because of land fund 
constraints. Meanwhile, HCM needs to pay special attention to spatial 
planning, urban morphology, and green space restoration and conser-
vation in newly developing urban areas. The two cities also need long- 
term strategies to increase resilience under the impact of far-reaching 
changes in the thermal environment and climate change, especially in 
Ho Chi Minh City. Our study also contributed to methodological merits 
through the applied methods, which showed the potential application to 
obtain LULC automatically based on GEE. The LST and SUHI predictions 
are expected to be ameliorated by adding climate change effects into the 
current models as a potential predictor. 
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