Volume 34 • Number 18 • December 2023 ISSN 1085-3278

Editor in Chief Vanessa Wong

Land Degradation & Development

LAND DEGRADATION & DEVELOPMENT

An international journal devoted to Land Degradation, Promotion of Ecological Sustainability, Sustainable Land Management, Sustainable Development, Socioeconomic Implications for Sustainability and Development in the North and South, Rehabilitation and Restoration of Degraded Terrestrial Ecosystems.

AIMS AND SCOPE

Land Degradation & Development is an international journal which seeks to promote rational study of the recognition, monitoring, control and rehabilitation of degradation in terrestrial environments. The journal focuses on what land degradation is; what causes land degradation; the impacts of land degradation; the scale of land degradation; the history, current status or future trends of land degradation; avoidance, mitigation and control of land degradation; remedial actions to rehabilitate or restore degraded land; and sustainable land management. Land degradation may be defined as the loss of utility or potential utility through the reduction of or damage to physical, social, cultural or economic (human'), and it is quite possible that cause(s) will be indirect, perhaps cumulative and difficult to identify. Amajor challenge is to learn how interactions betweendevelopment and environment can be better managed to increase prospects for conclusion unable imprevente to imprevent for ecologically and socially sustainable improvements to human well-being. Development means attempts to improve human well-being or environmental quality in rich and poor nations

for ecologically and socially sustainable improvements to numan well-being. Development means attempts to improve numan well-being or environmental quarky in terr and poor nations on a sustained basis (sustainable development). Papers are invited on scientific, social, economic, political and historical aspects of terrestrial environmental degradation. Also welcome are analyses presenting forecasts of trends, case studies and discussion on management, planning and policy-making relating to the promotion of ecological sustainability and the coun-teraction of land degradation. In addition to original research papers, regional and thematic reviews, both invited and submitted, will be included, as will short communications, book reviews and applications of remote sensing and computer techniques. The members of the Editorial Board are drawn from a comprehensive range of disciplines and nation-alities. Together with a strict refereeing procedure, this will ensure Land Degradation & Development maintains a high standard and presents material from a wide range of disciplines, from interdisciplinary study and with an international coverage. The subticet matterwill include the followide to relief. The subject matter will include the following topics.

ENVIRONMENTS Degradation of deserts, savannas and rangelands; forests and woodlands; tundra; mountain environments; wetlands and floodlands; farm-land and irrigated land; sand-dunes; coastal zones and islands; and urban and peri-urban environments in polar, temperate, subtropical and tropical regions.

PROCESSES 'Desertification' and rangeland degradation; soil degradation (compaction, loss of fertility, reduced organic matter, pollution, waterlogging, acidification, salinization, alkalinization, 'laterite' and hard-pan formation); erosion; degradation of vegetation cover and 'deforestation'; impoverishment of wildlife habitats and loss of species.

CAUSES Climatic change; sea-level variation; drought; storms; earth processes (geomorphological, volcanicity, natural leaching of soils); bushfires; and degradation as a consequence of industry, urban growth, agrochemicals, agricultural modernization, energy production consumption, mining, warfare, refugees or migrants, breakdown of traditional landuse strategies, altered communications, legislative changes, demographic changes, administrative causes, institutional causes and social or economic causes.

PERCEPTIONS Perception/recognition of degradation and attitudes toward degradation; ethics and land degradation; indicators; monitoring and surveillance; assessment of significance; and establishing past, present and future trends

IMPACTS Physical, biological, social, cultural and economic impacts (direct, indirect and cumulative); long-term and short-term impacts; assessment of significance; and aesthetic impact of degradation. RESPONSES AND MANAGEMENT Mapping; databases; management of monitoring and management of responses; sustainable land management; funding degradation control or

rehabilitation; education to counter land degradation; role of governmental organizations in managing land degradation; non-governmental organizations and land degradation; community participation and land degradation management; and the law and land degradation. EDITOR-IN-CHIEF Dr Vanessa Wong, Monash University, Australia

	E-mail: vanessa.wong@monash.edu					
FOUNDING EDITOR	Dr C. J. Barrow, Hon Associate, Coll E-mail: c.j.barrow@swansea.ac.uk	ege of Science, Swansea University, Singleton Park, Swansea, SA2 8PP, UK				
EFFECTS OF FIRE AND LAND CONTAMINATION						
SECTION EDITOR	Chris Barrow, Swansea University, U	ЈК				
ASSOCIATE EDITORS:	Cristina Branquinho, Universidade o	de Lisboa, Portugal				
	Antonio Ferreira, Coimbra Agricultu	re Politecnic School, Portugal				
	Lorenza Zavala, MED Soil Research	Group, Spain				
	Qixing Zhou, Nankai University, Chi	ina				
REMOTE SENSING AND EMERGING TECHNOLOGIES						
SECTION EDITOR	Yuemin Yue, Chinese Academy of So	ciences, China				
ASSOCIATE EDITORS:	Gregory Duveiller, European Commission Joint Research Centre, Italy					
	Stéphanie Marie Anne F Horion, University of Copenhagen, Denmark					
	Yanxu Liu, Beijing Normal University, China					
	Jian Peng, Peking University, China	Jian Peng, Peking University, China				
	Narcisa Pricope, University of North	Narcisa Pricope, University of North Carolina Wilmington, USA				
	Paolo Tarolli, University of Padova, I	Italy				
	Feng Tian, Wuhan University, China					
	Kirshna Prasad Vadrevu, NASA Mar	shal Space Flight Center, USA				
RESTORATION AND RECLAMATION		Katrin Prager, The James Hutton University, UK				
SECTION EDITOR		Shuai Wang, Beijing Normal University, China				
Jan Frouz, Charles University, Czech Republic		SOIL EROSION				
ASSOCIATE EDITORS: Purushothaman Chirakkuzhyil Abhilash, Banaras Hindu University, India Mac Callaham Jr., Center for Forest Disturbance Science, USA Ali El-Keblawy, University of Sharjah, UAE Chao Liang, Chinese Academy of Sciences, China Marc Oliva, University of Barcelona, Spain Vimal Chandra Pandey, Babasaheb Bhimrao Ambedkar University, India Kripal Singh, CSIR-National Botanical Research Institute, India Daquan Sun, The Biology Centre of the Czech Academy of Sciences, Czech Republic Péter Török, University of Debrecen, Hungary Ying Zhao, Ludong University, China		SECTION EDITOR Jan Nyssen, Ghent University, Belgium				
		ASSOCIATE EDITORS: Amaury Frankl, Ghent University, Belgium Wu Gao-Lin, Chinese Academy of Sciences, China Nigussie Haregeweyn, Tottori University, Japan Michael Meadows, University of Cape Town, South Africa Biadgilgn Demissie Mullaw, Université Libre de Bruxelles, Belgium Seyed Hamidreza Sadeghi, Tarbiat Modares University, Iran Stefan Strohmeier, International Center for Agricultural Research in the Dry An				
AND & SOIL QUALITY		SOIL HYDROLOGY				
		SECTION EDITOR				
Ning Ling, (Land & Soil Quality) Lanzhou University / N Gerardo Ojeda, (Land Quality & Ecosystem Services) E(lanjing Agricultural University, China CAPMA, Universidad Nacional	Vanessa Wong, Monash University, Australia				
Abierta y a Distancia UNAD - JCM, Bögotá, Colombia Yakov Kuzyakov, (Soil Degradation) Georg-August-Univ ASSOCIATE EDITORS: Thilde Bech Bruun, University of Copenhagen, Denmar "Dengrong Chen, Griffith University, Nuetcalia	versität Göttingen, Germany k	ASSOCIATE EDITORS: Xiaodong Gao, Northwest A&F University, China Lei Huang, Northwest Institute of Eco-Environment and Resources, CAS, China Hanoch Lavee, Bar Ilan University, Israel Ali Reza Vaezi. University of Zanian. Iran				
Huai Chen, Chinese Academy of Sciences, China		Joris de Vente, CEBAS-CSIC, Spain				
Maxim Dorodnikov, Georg-August-Universität Göttinge	en, Germany	Lea Wittenberg, University of Haifa, Israel				
Anna Gunina, Georg-August-Universität Göttingen, Ger Esteban Johnaw, CONICET & Universidad Nacional de	many San Luis Argentina	Yongyong Zhang, Northwest Institute of Eco-Environment and Resources, CAS				
rina Kurganova, Institute of Physicochemical and Biolo Ebhin Masto. CSIR. India	gical Problems in Soil Science, Russia	CLIMATE CHANGE				
ling Tian, China Agricultural University, China		SECTION EDITOR Vanessa Wong, Monash University Australia				
Viacheslav Vasenev, Peoples Friendship University of R	ussia, Russia					
Wenhua Xiang, Central South University of Forestry and	d Technology, China	ASSOCIATE EDITORS: Clayton Butterly, The University of Melbourne, Australia				
Kingliang Xu, Chinese Academy of Sciences, China		Peng Fei, Northwest Institute of Eco-Environment and Resources. CAS. China				
Huadong Zang, Georg-August-Universität Göttingen, G Kazem Zamananian, Georg-August-Universität Götting Kuechen Zhang, College of Natural Resources and Envi	ermany en, Germany ronment, China	Guangyao Gao, Chinese Academy of Sciences, China Xiaodan Guan, Lanzhou University, China Zabra Kalanzhai Sciekholm University, Sweden				
		Lana Raanan, Stockholli Oliversity, Sweden				

SOCIO-ECONOMIC ASPECTS SECTION EDITOR Chris Barrow, Swansea University, UK

ASSOCIATE EDITORS Hossein Azadi, Ghent University, Belgium Alan Grainger, University of Leeds, UK

CAS. China ina Jasper Knight, University of the Witwatersrand, South Africa Jasper Knight, University of the Witwatersrand, South Arrica Lu-Jun Li, Northeast Institute of Geography and Agroecology, CAS, China Xiangjin Shen, Northeast Institute of Geography and Agroecology, CAS, China Anna Smetanova, Global Water Partnership Central and Eastern Europe, Slovakia Andrew Thomas, Aberystwyth University, UK Nicholas Webb, USDA-ARS Jornada Experimental Range, USA Da Wei, Institute of Mountain Hazards and Environment, CAS, China Erqi Xu, Institute of Geographic Sciences and Natural Resources Research, CAS, China

Areas, Jordan

Manuscript Submission. The Land Degradation & Development online submission site can be found at http:// c.manuscriptcentral.co /ldd

All papers must be submitted via the online system. Please read and follow the author guidelines before submitting your work submitting your work

NOTE: Please check whether you already have an account in the system before trying to create a new one. If you have reviewed or authored for the journal in the last year it is likely that you will have had an account created.

A covering letter must be included when submitting a paper and this must state the novelty of the

paper. Submission of a manuscript to LDD implies that all persons listed as authors qualify for

authorship, and all those who qualify are listed. All authors listed as authors quality ion authorship, and all those who qualify are listed. All authors listed should meet the following criteria: Substantial contributions to research design, or the acquisition, analysis or interpretation of data Drafting the paper or revising it critically Approval of the submitted and final versions

Authors should provide a statement that all listed authors meet these criteria and that nobody who qualifies for authorship has been excluded. Authors must declare that the submitted work is their own and that copyright has not been

breached in seeking its publication. Authors should declare that the submitted work has not previously been published in full, and is not

being considered for publication elsewhere

These statements should be included in the Cover Letter upon submission.

Files to submit: Text and Tables – as doc, .docx, .rtf, .ppt, .xls Figures – as .TIFF or .EPS. Supporting Information–files (optional) as required, see below for further details. LaTeX files may be submitted providing that an .eps or .pdf file is provided in addition to the source files.

MANUSCRIPT STYLE

- MANUSCRIPT STYLE
 The language of the journal is English.
 Word Limit: Manuscripts submitted to LDD must not exceed 6000 words, this includes References. Any manuscripts over the word limit will be returned to authors without editorial or external review.
 Number of Tables and Figures: The combined maximum number of tables and figures allowed is ten. Any manuscript which exceeds this amount will be returned to authors with the request to remove the excess number of images.
 All submissions including book review must have a title, and have a margin of 3cm all round.
 Illustrations and tables must be on separate sheets, and not be incorporated into the text.
 Figures and illustrations must either fit a one column size, less than 84.49 mm wide, or two column size, less than 177.09 mm wide.
 The title page must list the full title, short title of up to 70 characters, and names and affiliations of all authors. Both title should be in capital letters and the full names of the authors who is to check the proofs. Both titles should be in capital letters and the full names of the authors in lower-case letters.
 Include the name(s) of any sponsor(s) of the research contained in the paper, along with grant number(s) in the acknowledgement section.

- Include the name(s) of any sponsor(s) of the research contained in the paper, along with grant number(s) in the acknowledgement section.
 Supply an abstract of up to 250 words for all articles except book reviews. An abstract is a concise summary of the whole paper, not just the conclusions, and is understandable without reference to the rest of the paper. It should contain no citation to other published work.
 The acknowledgements should list all the people and organisations who are not named as authors but who helped during the research process and the development of the paper prior to its submission. Please keep the acknowledgements brief and place them at the end of the paper before the references section.
 Include up to eight keywords that describe your paper for indexing purposes.
 Please note that the journal publishes Supporting Information than in the main article. Please upload these through ScholarOne Manuscripts and add 51, 52 etc. to the caption. Supporting Information will be online only and will not be copy edited or typeset so please ensure accuracy.

- upboard these timotogin scholardone wainaschipts and adds 31, 32 etc. to the captoin appointing information will be online only and will not be copy edited or typeset so please ensure accuracy.
 When citing Supporting Information in the main text please use abbreviations, "\$1", rather than "Supporting Information 1".
 If species names are given then the full name should be used, i.e "*Pinus densiflora* Siebold & Zucc.", not "*Pinus densiflora*".

Authors for whom English is a second language may choose to have their manuscript professionally

edited before submission to improve the English language. A list of independent suppliers of editing services can be found at http://authorservices.wiley.com/bauthor/english_language.asp.lapnases authors can also find all is of local English improvement services at http://www.wiley.co.jr/journals/ editcontribute.html. All services are paid for and arranged by the author, and use of one of these services does not guarantee acceptance or preference for publication. PLEASE NOTE: Editors reserve the right to immediately reject a paper if the English is not of a high enough chandrad.

nough standard

Illustrations

Upload each figure as a separate file in either .tiff or .eps format, with the lead author's name, the Upload each figure as a separate file in either. tiff or .eps format, with the lead author's name, the figure number and the top of the figure indicated. Compound figures e.g. Ia, b, c should be uploaded as one figure. Tints are not acceptable. Lettering must be of a reasonable size and must still be clearly legible upon reduction, and consistent within each figure and set of figures. Where a key to symbols is required, please include this in the artwork itself, not in the figure legend. All illustrations must be supplied at the correct resolution: • Black and white and colour photos - 300 dpi metror. 600 dpi minimum • Craphs, chawings, etc - 800 dpi prefered; 600 dpi minimum • Combinations of photos and drawings (black and white and colour) - 500 dpi.

• Combinations of photos and of the main text and should be on separate sheets placed after the references. If a table is created in excel the file should be uploaded separately. The cost of printing colour illustrations in this journal will be charged to the author. If colour illustrations are supplied electronically in either TIFF or EPS format, they may be used in the PDF of the article at no cost to the author, even if this illustration was printed in black and white in the journal. The PDF will appear on the Willey Online Library site. However, colour figures are free online so please specify if you wish to have colour online only when you submit your paper.

Reference style

Reference style Reference style References should be quoted in the text as name and year within brackets and listed at the end of the paper alphabetically. Where reference is made to more than one work by the same author published in the same year, identify each citation in the text as follows: (Collins, 1998a, Collins, 1998b). Where three or more authors are listed in the reference list, please cite in the text as (Collins et al., 1998). When referencing in text please use "&" instead of "and" in citations, i.e. (Ott & Longnecker, 2001) not (Cit and Longnecker, 2001). All references must be complete and accurate. Where possible the DOI for the reference should be included at the end of the reference. Online citations should include date of access. If necessary, cite unpublished or personal work in the text but do not include it in the reference list. References should be listed in the following schele:

- Should be listed in the following style:
 Kumar P. 2011. Capacity constraints in operationalisation of payment for ecosystem services (PES) in India: Evidence from land degradation. Land Degradation & Development 22: 432–443. DOI: 10.1002/ldr.1024
 - Dickie JA, Parsons AJ. 2012. Eco-Geomorphological processes within grasslands, shrublands and badlands in the semi-arid Karoo, South Africa. Land Degradation & Development 23: 534-547. DOI: 10.1002/ldr.2170 Taguas EV, Carpintero E, Ayuso JL. 2013.Assessing land degradation risk through 2.
 - 3

long-term analysis of erosivity: A case study in Southern Spain. Land Degradation & Development 24:179–187. DOI: 10.1002/ldr.1119

- Citing Early/View Articles
 Citing Early/View Articles
 Citing Early/View Articles
 Citing Early/View Articles
 Kiernan K. 2013. Nature, severity and persistence of Geomorphological damage caused by armed conflict. Land Degradation & Development. DOI: 10.1002/ldr.2216
 Bizoza AR. 2013. Three-stage analysis of the adoption of soil and water conservation in the Highlands of Rwanda. Land Degradation & Development. DOI: 10.1002/ldr.2145
 Alegre Prats S, Cortizo Malvar M, Simöes Vieira DC, MacDonald L, Keizer, JJ. Effectiveness of budrowulching to reduce runoff and envision in a resently hunt nine negatation in of hydromulching to reduce runoff and erosion in a recently burnt pine plantation in Central Portugal. Land Degradation & Development. DOI: 10.1002/ldr.2236 Roy M, McDonald LM. 2013. Metal uptake in plants and health risk assessments in metal-contaminated smelter soils. Land Degradation & Development. DOI: 10.1002/ldr.2237
 - 4.

To link to an article from the author's homepage, take the DOI (digital object identifier) and append it to "http://dx.doi.org/" as per following example:DOI 10.1002/idr.735, becomes http://dx.doi. org/10.1002/idr.735.

To include the DOI in a citation to an article, simply append it to the reference as in the following

Yan-Gui S, Xin-Rong L, Ying-Wu C, Zhi-Shan Z, Yan L. 2013. Carbon fixation of Cyanobacerial-Algal crusts after desert fixation and its implication to soil organic carbon accumulation in desert. Land

Degradation & Development 24: 342-349 DOI: 10 1002/ldr 1131

Supporting Information Supporting Information as useful way for an author to include important but ancillary information with the online version of an article. Examples of Supporting Information include additional: tables, data sets, figures, movie files, audio clips, 3D structures, and other related nonessential multimedia files. Supporting Information should be cited within the article text, and a descriptive legend should be included, It is published as supplied by the author, and a proof is not made available prior to publication; for these reasons, authors should provide any Supporting Information in the desired final format. For further information on recommended file types and

not made available prior to publication; for these reasons, authors should provide any Supporting Information in the desired final format. For further information on recommended file types and requirements for submission please visit. http://authorservices.wiley.com/bauthor/suppinfo.asp The availability of Supporting Information should be indicated in the main manuscript by a paragraph, to appear after the Acknowledgements, headed 'Supporting Information'. Short legends should be included here, listing the titles of all supporting figures, tables, data etc. Full (more detailed) legends for Supporting Information must also be uploaded as a separate Word document. This version will be used online, alongside where the Supporting Information is hosted, but not in the manuscript text, which instead uses the short versions of the legends. For image file to ScholarOne, please use the space provided to paste in the legend so that it appears underneath the figure in the PDF that is sent to the reviewers. In order to protect reviewer anonymity, material posted on authors' websites cannot be reviewed. Supporting Information items should be referred to in the text as follows: Supporting figures: Figure 51, Table 52 etc. Supporting tables: Table 51, Table 52 etc. Supporting animations: Movie 51, Methods 51, Methods 52 etc. Supporting animations: Movie 52 etc. Any other text-based Supporting Information. Appendix 51, Appendix 52 etc. The above order should be used when listing the Supporting Information legends, both in the short versions in the main manuscript text file, as well as in the separate full legends file. **INITIA SURMISSION**

INITIAL SUBMISSION

INITIALSUBMISSION NON-LATEX USERS: Upload your manuscript files. At this stage further source files, supporting information, do not need to be uploaded. LATEX USERS: If you are submitting LaTeX files you should upload a single .pdf that you have generated from your source files. You must use the File Designation "Main Document" from the dropdown box.

REVISION SUBMISSION NON-LATEX USERS: Editable source files must be uploaded at this stage. Tables must be on separate pages after the reference list, and not be incorporated into the main text. Figures should be uploaded as separate figure files.

uploaded as separate figure files. LATEX USERS: When submitting your revision you must still upload a single .pdf that you have generated from your now revised source files. You must use the File Designation "Main Document" from the dropdown box. In addition you must upload your TeX source files. For all your source files you must use the File Designation "Supplemental Material not for review". Previous versions of uploaded documents must be deleted. If your manuscript is accepted for publication we will use the files you upload to typeset your article within a totally digital workflow.

POST ACCEPTANCE

POSTACCEPTANCE Further Information. For accepted manuscripts the publisher will supply proofs to the submitting author prior to publication. This stage is to be used only to correct errors that may have been introduced during the production process. Prompt return of the corrected proofs, preferably within two days of receipt, will minimise the risk of the paper being held over to a later issue. Free access to the final PDF offprint of your article will be available via Author Services only (unless otherwise stated). Please therefore sign up for Author Services if you would like to access your article PDF offprint and enjoy the many other benefits the service offers. Reprints of your article and copies of the journal may be ordered. There is no page charge to authors.

Accepted Articles 'Accepted Articles' have been accepted for publication and undergone full peer review but have not been through the copyediting, typesetting, pagination and proofreading process. Accepted Articles are published online a few days after final acceptance, appearing in PDF format only, and are given a Digital Object Identifier (DOI), which allows them to be cited and tracked, and indexed by PubMed.

EDITORIAL POLICIES

Digital Object Identifier (DO), which mixes them to be cred and tracked, and modeled by Publiced. **EDITORIAL POLICIES** Wiley requires that all authors disclose any potential conflict of interest. Any interest or relationship, financial or otherwise, which might be perceived as influencing an author's objectivity, is considered a potential conflict of interest. These must be disclosed when directly relevant or indirectly related to the work described in the manuscript. Potential conflicts of interest include, but are not limited to; patient or stock ownership, membership on a company's board of directors, membership on an advisory board or committee for a company, or consultancy for or receipt of speaker's fees from a advisory board or to review this policy with all authors and to collectively list in the cover letter to the Editor-in-Chief, in the manuscript (in the footnotes, Conflict of Interest or Acknowledgments section), and in the online submission system all pertinent commercial and other relationships. The journal of *Land Degradation & Development* adheres to the definition of authorship set up by The International Committee of Medical Journal Editors (ICMUE). According to the ICMUE, authorship criteria should be based on: substantial contributions to conception and design of, or acquisition of data or analysis and interpretation of data; drafting the article or revising it critically for important intellectual content; and final approval of the version to be published. Authors should meet these conditions. By submitting a manuscript to LDD, all authors warrant that they have the authority to publish the meterial and that the paper, or one substantially the same, has neither been published previously, nor is being considered for publication elsewhere. Submission at the subject to testing for textual similarity to other published when dealing with any ethics cases. If suspected, your manuscript will be subjected to IThenticate which helps Editors and the Editorial team check written

NOTE to NIH Grantees: Pursuant to NIH mandate, Wiley will post the accepted version of contributions authored by NIH grant-holders to PubMed Central upon acceptance. This accepted version will be made publicly available 12 months after publication. For further information, see http://www.wiley.com/go/nihmandate.

ACCESS & COPYRIGHTS

ACCESS & COPYRIGHTS OnlineOpen OnlineOpen is available to authors of articles who wish to make their article open access. With OnlineOpen the author, their funding agency, or institution pays a fee to ensure that the article is made available to non-subscribers upon publication via Wiley Online Library, as well as deposited in PubMed Central and PMC mirror sites. In addition to publication online via Wiley Online Library, authors of OnlineOpen articles are permitted to post the final, published PDF of their article on a website, institutional repository, or other free public server, immediately on publication.

Copyright Transfer Agreement

Copyright transfer Agreement If your paper is accepted, the author identified as the formal corresponding author for the paper will receive an email prompting them to login into Author Services; where via the Wiley Author Service (WALS) they will be able to complete the licence agreement on behalf of all authors on the paper.

For authors signing the copyright transfer agreement If the OnlineOpen option is not selected the corresponding author will be presented with the copyright transfer agreement (CTA) to sign. The terms and conditions of the CTA can be previewed in the samples associated with the Copyright FAQs below: CTA Terms and Conditions (http://authorservices.wiley.com/bauthor/faqs_copyright.asp)

For authors choosing OnlineOpen If the OnlineOpen option is selected the corresponding author will have a choice of the following Creative Commons License Open Access Agreements (OAA): Creative Commons Attribution License OAA Creative Commons Attribution Non-Commercial License OAA Creative Commons Attribution Non-Commercial License OAA To preview the terms and conditions of these open access agreements please visit the Copyright FAQs hosted on Wiley Author Services (http://authorservices.wiley.com/bauthor/faqs.copyright-shrd html

html. If you select the OnlineOpen option and your research is funded by The Wellcome Trust and members of the Research Councils UK (RCUK) you will be given the opportunity to publish your article under a CC-BY license supporting you in complying with Wellcome Trust and Research Councils UK requirements. For more information on this policy and the Journal's compliant self-archiving policy please visit: http://www.wiley.com/go/funderstatement.

LANDDEGRADATION&DEVELOPMENT(Land Degrad. Develop.)

wileyonlinelibrary.com/journal/ldr

Volume 34, Issue No. 18

December 2023

CONTENTS

The response of glaciers and glacial lakes to climate change in the Southeastern Tibetan Plateau over the past three decades X. Dou, X. Fan, X. Wang, C. Fang, M. Lovati and C. Zou	5675
Integrating the impacts of vegetation coverage on ecosystem services to determine ecological restoration targets for adaptive management on the Loess Plateau, China J. He, Y. Li, X. Shi and H. Hou.	5697
Environmental decision support system development for natural distribution prediction of <i>Festuca ovina</i> in restoration of degraded lands M. Saffariha, A. Jahani, L. M. Roche and Z. Hosseinnejad	5713
Grazing regulates soil N cycling of annual pastures by enhancing soil N turnover in arid climate condition Y. Guo, J. Ning, S. Lou, C. Zhang, W. Zhu and F. Hou	5733
New concept of permafrost degradation monitoring based on photonics technologies: Case study from Calypsostranda (Bellsund, Svalbard) P. Zagórski, R. Dobrowolski, A. Paździor, T. Nasiłowski, K. Kultys, K. Misztal, P. Piątek, D. Lis, C. Polakowski, M. Łukowski, W. Berus, P. Mergo and A. Bieganowski.	5744
Assessing the ecological impacts of coastal reclamation on cropland protection: An integrated index system L. Qiu and H. X. H. Bao	5756
A regional assessment of ecological environment quality in Thailand special economic zone: Spatial heterogeneous influences and	
future prediction	5770
C. 1. Nguyen, K. Kaewinongrach, S. Channourish, M. Chongcheawichannan, IN. Phan and D. Niammuda	5770
P. Guo, W. Guo, B. Hao, Z. Zhang, C. Lu, T. Liu, S. Ding, L. Zhao, J. Cheng and F. Y. Li.	5788
Understanding the balance between soil conservation and soil water storage capacity during the process of vegetation restoration in semi-arid watersheds in the Loess Plateau, China	5905
Evolution of land cover in the special area of conservation of Monchique (Southern Portugal): Have the objectives of the Natura 2000 network been achieved (1995–2018)?	5005
M. A. M. Raposo, L. J. R. Nunes and C. J. Pinto-Gomes.	5816
L. Yu, S. Liu, F. Wang, H. Liu, Y. Liu, O. Wang and Y. Zhao	5824
Effect of vegetation blanket cover with different materials on soil microbial community structure of opencast coal mines in arid areas Z. Wang, H. Liu, M. J. C. Crabbe, X. Zhao and B. Liu	5835
Spatiotemporal evolution of growing-season vegetation coverage and its natural-human drivers in the Yellow River Basin, China Y. Zang, B. Yu, C. Wu and Z. Zhao	5849
How does grassland degradation affect soil enzyme activity and microbial nutrient limitation in saline-alkaline meadow? J. Yang, X. Wu, H. Ruan, Y. Song, M. Xu, S. Wang, D. Wang and D. Wu	5863
Divergent responses of foliar functional traits of understory shrubs to different reforested plantations in southern China Q. Mo, Y. Liu, Y. Yu, Z. Peng, Z. He, Y. Tao and Q. Zhou	5876
Effects of fertilizer application strategies on soil organic carbon and total nitrogen storage under different agronomic practices: A meta-analysis	
N. Y. Bohoussou, SW. Han, HR. Li, Y. D. Kouadio, I. Ejaz, A. L. Virk, Y. P. Dang, X. Zhao and HL. Zhang	5889
The final countdown? Monitoring the rapid shrinkage of the Maladeta glacier (2010–2020), Southern Pyrenees A. Martínez-Fernández, E. Serrano, J. J. de Sanjosé, M. Gómez-Lende, M. Sánchez-Fernández, J. I. López-Moreno, I. Rico	
and A. Pisabarro	5905
H. Laoufi, M. Ait Mechedal and Y. Daoud	5923
Evolutionary characteristics of arbuscular mycorrhizal fungi in Eucalyptus soil and driving changes in biologically-based phosphorus across Eucalyptus plantations	5940
The role of land use and land cover changes in triggering soil losses in the SE Alentejo, Portugal	5054
The isolation of benzo[a]pyrene-degrading strain and its cometabolic bioremediation with salicylic acid of long-term PAH-polluted soil	5040
Response of the tomato rhizosphere bacterial community to water-oxygen coupling under micronanobubble oxygenated drip	J707
J. Wang, S. Guo, S. Zhang, C. Zhang, W. Niu, X. Song and J. Han	5983
Soil bacterial community and ecosystem multifunctionality regulated by keystone plant species during secondary succession R. Shang, S. Li, X. Huang, W. Liu, X. Lang, C. Xu and J. Su.	5997
Multimodel simulations revealed strong spatial heterogeneity in temperature-, photoperiod- and moisture-driven modes of autumn phenology in Northern Hemisphere grasslands (25° N-55° N)	4000
T. Li dilu S. Kell.	6009
L. Ma, W. Niu, G. Li, Y. Du, J. Sun and K. H. M. Siddique	6021

Cover Image © J. Lekavicius/Shutterstock

Land Degradation & Development

Information for Subscribers

Land Degradation & Development is published in 18 issues per year. Institutional subscription prices for 2023 are: Print & Online: US\$2825.00 (US and Rest of World), €1,829.00 (Europe). £1,447.00 (UK). Prices are exclusive of tax. Asia-Pacific GST, Canadian GST/HST and European VAT will be applied at the appropriate rates. For more information on current tax rates, please go to www.wileyonlinelibrary.com/tax-vat. The price includes online access to the current and all online back files for previous 5 years, where available. For other pricing options, including access information and terms and conditions, please visit visit https://onlinelibrary.wiley.com/library-info/ products/price-lists. Terms of use can be found here: https://onlinelibrary.wiley.com/terms-and-conditions

Delivery Terms and Legal Title

Where the subscription price includes print issues and delivery is to the recipient's address, delivery terms are Delivered at Place (DAP); the recipient is responsible for paying any import duty or taxes. Title to all issues transfers Free of Board (FOB) our shipping point, freight prepaid.

Claims for Missing or Damaged Print Issues

Our policy is to replace missing or damaged copies within our reasonable discretion, subject to print issue availability, and subject to the following terms: Title to all issues transfers Freight on Board ("FOB") to the address specified in the order; (1) Freight costs are prepaid by Wiley; and (2) Claims for missing or damaged copies must be submitted by the Customer or Subscription Agent within the claims window, as noted below.

Claims window - General

Claims for missing print issues must be sent to cs-agency@wiley.com (and the Subscription Agent or Customer may be referred to a society) within three months of whichever of these dates is the most recent: date of subscription payment; or date of issue publication.

Claims window - India

Both Subscription Agents and Customers in India have 48 hours after receipt of goods to confirm that all content listed on the packing label has been received. In the event of any discrepancy, SPUR Infosolutions, Wiley's delivery partner in India, needs to be notified within forty-eight (48) hours using this email address: support@spurinfo.com. All claims will be checked against SPUR Infosolutions delivery records before the claim is accepted. The above terms for Wiley's claims policy otherwise apply.

Backstock Agent

Back issues: Single issues from current and prior year volumes are available at the current single issue price from cs-journals@wiley.com. Earlier issues may be obtained from Periodicals Service Company, 351 Fairview Avenue – Ste 300, Hudson, NY 12534, USA. Tel: +1 518 822-9300, Fax: +1 518 822-9305, Email: psc@periodicals.com

Periodical Statement

LAND DEGRADATION & DEVELOPMENT, (print ISSN 1085-3278; online ISSN 1099-145X) is published 18 issues per year. Postmaster: Send all address changes to LAND DEGRADATION & DEVELOPMENT, Wiley Periodicals LLC, C/O The Sheridan Press, PO Box 465, Hanover, PA 17331 USA.

Sample Copies

If you are interested in subscribing, you may obtain a free sample copy by contacting John Wiley & Sons Ltd at the above address.

Services

Advertisements

Advertisement Sales Department, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, UK. Tel: +44 (0) 1243 770254 Fax: +44 (0) 1243 770432 E-mail: adsales@wiley.co.uk

Commercial Reprints:

Email: corporatesaleseurope@wiley.com; corporatesalesusa@wiley.com; or corporatesalesaustralia@wiley.com

Author Reprints (50-300 Copies): Order online: http://www.sheridan.com/wiley/eoc

Contact details within John Wiley & Sons

Journal Customer Services: For ordering information, claims and any enquiry concerning your journal subscription please go to https://wolsupport.wiley.com/s/contactsupport?tabset-a7d10=2

or contact your nearest office. Americas: Email: cs-journals@wiley.com; Tel: +1 877 762 2974 Tel: +44 (0) 1865 778315; 0800 1800 536 (Germany) Germany, Austria, Switzerland, Luxembourg, Liechtenstein: cs-germany@wiley.com; Tel: 0800 1800 536 (Germany) Asia Pacific: Email: cs-journals@wiley.com; Tel: +65 3165 0890. Japan: For Japanese speaking support, Email: cs-japan@wiley.com. Visit our Online Customer Help at https://wolsupport.wiley.com/s/ contactsupport?tabset-a7d10=2

Copyright and Copying (in any format)

Copyright © 2023 John Wiley & Sons, Ltd. All rights reserved. No part of this publication may be repro-duced, stored or transmitted in any form or by any means without the prior permission in writing from the copyright holder. Authorization to copy items for internal and personal use is granted by the copyright holder for libraries and other users registered with their local Reproduction Rights Organisation (RRO), e.g. Copyright Clearance Center (CCC), 222 Rosewood Drive, Danvers, MA 01923, USA (www.copyright.com), provided the appropriate fee is paid directly to the RRO. This consent does distribution, for creating new collective works or for resale. Permissions for such reuse can be obtained using the RightsLink "Request Permissions" link on Wiley Online Library. Special requests should be addressed to: permissions@wiley.com

Abstracting and Indexing

Land Degradation & Development is covered by the following abstracting and indexing services:AGRICOLA Database (National Agricultural Library), ASFA: Aquatic Sciences & Agricultural EDFaty, ASPA: Addate Sciences & Fisheries Abstracts (CSA/CIG), AURSI: African Urban and Regional Science Index (AURSI), BIOBASE (Elsevier), Biological Abstracts* (Thomson ISI), BIOSIS Previews* (Thomson ISI), CAB Abstracts* (CABI), Cambridge Scientific Abstracts (CSA/CIG), COMPENDEX (Elsevier), CSA Environmental Sciences & Pollution Management Database (CSA/CIG), Current Contents*/Agriculture, Biology (S. Environmental Sciences (ISI), EAUPOC Biology & Environmental Sciences (Thomson ISI), EAUDOC Database (Office International de l'Eau), Environment Abstracts (LexisNexis), Environmental Issues & Policy Index (EBSCO), GeoArchive (Geosystems), GEOBASE/Geographical & Geological Abstracts (Elsevier), Geotitles (Geosystems), Journal Citation Reports/Science Edition (Thomson ISI), Science Citation Index Expanded^{to} (Thomson ISI), Science Citation Index[®] (Thomson ISI), SCOPUS (Elsevier), Web of Science[®] (Thomson ISI).

Online Open

Land Degradation & Development accepts articles for Open Access publication. Please visit https://authorservices.wiley.com/authorresources/Journal-Authors/open-access/hybrid-open-access.html for further information about Open Access.

Note to NIH Grantees

Pursuant to NIH mandate, Wiley will post the accepted version of contributions authored by NIH grant-holders to PubMed Central upon acceptance. This accepted version will be made publicly available 12 months after publication. For further information, see www.wiley.com/go/nihmandate

Wiley's Corporate Citizenship initiative statement

Wiley's Corporate Citizenship initiative seeks to address the environmental, social, economic, and ethical challenges faced in our business and which are important to our diverse stakeholder groups. Since launching the initiative, we have focused on sharing our content with those in need, enhancing community philanthropy, reducing our carbon impact, creating global guidelines and best practices for paper use, establishing a vendor code of ethics, and engaging our colleagues and other stakeholders in our efforts.

Follow our progress at www.wiley.com/go/citizenship

Production Information

For manuscripts that have been accepted for publication, please contact: Jenifer limenez E-mail: LDRproofs@wiley.com

Production Details

Printed in Singapore by C.O.S. Printers Pte Ltd. Printed on acid-free paper.

Disclaimer

The Publisher and Editors cannot be held responsible for errors or any consequences arising from the use of information con-tained in this journal; the views and opinions expressed do not necessarily reflect those of the Publisher or Editors; neither does the publication of advertisements constitute any endorsement by the Publisher or Editors of the products advertised.

View this journal online at wileyonlinelibrary.com/journal/ldr

Statement on Research4Life

Wiley is a founding member of the UN-backed HINARI, AGORA, and OARE initiatives. They are now collectively known as <u>Research4Life</u>, making online scientific content available free or at nominal cost to researchers in developing countries. Please visit Wiley's Content Access – Corporate Citizenship site: http://www.wiley.com/WileyCDA/Section/id-390082.html

RESEARCH ARTICLE

WILEY

A regional assessment of ecological environment quality in Thailand special economic zone: Spatial heterogeneous influences and future prediction

Can Trong Nguyen ^{1,2} [Rungnapa Kaewthongrach ² 💿	Sittiporn Channumsin ² 💿
Mitchai Chongcheawchamn	an ¹ Thanh-Noi Phan ³	Damrongrit Niammuad ²

¹Faculty of Engineering, Prince of Songkla University (Hatyai campus), Songkhla, Thailand

²Space Technology Research Center, Geo-Informatics and Space Technology Development Agency (GISTDA), Chonburi, Thailand

³Department of Geography, Ludwig-Maximilians University of Munich, Munich, Germany

Correspondence

Can Trong Nguyen, Faculty of Engineering, Prince of Songkla University (Hatyai campus), Songkhla 90110, Thailand. Email: trongcan.ng@gmail.com

Rungnapa Kaewthongrach, Space Technology Research Center, Geo-Informatics and Space Technology Development Agency (GISTDA), Chonburi, Thailand. Email: rungnapa.kae@gistda.or.th

Abstract

"Eastern Economic Corridor" is a development plan under the Thailand 4.0 scheme to revitalize the economy. However, it has influenced the environment through numerous infrastructural and industrial projects. The ecological environment is the most fragile component since it is susceptible to land use, land cover changes (LULCC) and rapid development. Meanwhile, there is currently a lack of comprehensive studies on spatial heterogeneity and future simulation of ecological environment quality (EEQ). Therefore, this study aims to analyze changes in EEQ and controlling factors and to predict near-future EEQ by adopting an integrated approach of remote sensing and spatial analyses. It revealed that the regional EEQ has considerably fluctuated in the period 2013-2021. The dynamic areas, accounting for nearly half of the area, include ecologically degraded areas in coastal urban and surrounding areas and ecologically improved areas in the eastern forest and perennial plantations. Chonburi is the most vulnerable province due to its long coast with extensive urban infrastructures and industrial estates. These changes are an integrated consequence of natural and socioeconomic impacts. Particularly, LULCC, infrastructural projects, and climate are the most crucial contributors since they directly regulate the functions of the ecological environment, which will amplify the future changes of EEQ reflected via the near-future prediction. This research identified key controlling factors and spatial heterogeneities that are useful for policymakers and local authorities to have appropriate local-oriented plans for each area relevant to their uniqueness. Besides, regional plans should be also considered along with regional concerns such as LULCC, crop structures, water management, and green infrastructure, as well as legal interventions to promote sustainable development in this special economic zone.

KEYWORDS

eastern economic corridor, ecological environment, future prediction, land use and land cover changes, spatial heterogeneity, special economic zone, sustainable development

1 | INTRODUCTION

"Eastern economic corridor" (EEC) is a special economic zone in eastern Thailand to stimulate the economy through high-value-added industries (Bhrammanachote, 2019; EECO, 2018; Niyomsilp et al., 2020). It has attracted vast international and private investments in export-oriented products and heavy industry (Ngampramuan & Piboonsate, 2021). The development of the EEC has markedly improved regional development in terms of economy, gross domestic product (GDP), and poverty alleviation (Hutasavi & Chen, 2022). The average income in this region exceeds that in Bangkok and becomes the region with the highest income in Thailand (Tontisirin & Anantsuksomsri, 2021). However, this project also poses various challenges, such as incentive investment policies, synchronous and connectible infrastructures, job opportunities and benefits for local people, and environmental protection strategies for sustainable development toward environmentally friendly export products (Cheevapattananuwong et al., 2020; Lunsamrong & Tippichai, 2022; Nguyen et al., 2021; Tipayalai, 2020).

The rapid and intensive development forces this region into a context of considerable urban agglomeration, land use and land use changes (LULCC), and environmental degradation (Boonyanam & Bejranonda, 2022; Diep et al., 2022; Mekparyup & Saithanu, 2020; Thongphunchung et al., 2022). The region has seen a more prominent urbanization in coastal areas during 2007–2016, and this trend will continue in the future at a rate of 2.40% per year (Tontisirin & Anantsuksomsri, 2021). The urban agglomeration and industrial development have induced several environmental problems from vegetation loss, to biodiversity reduction, air pollution, and harmful chemicals in atmosphere, water, and even food chains (Boonkaewwan et al., 2021; Boonyanam & Bejranonda, 2021; Saetang, 2022; Thongphunchung et al., 2022; Wongsa et al., 2020). These adverse impacts ultimately affect the health of residents, workers, and the sustainable development of the region.

Ecological environment is a key approach in nature-based solutions (NbS), which provides cost-effective and co-benefit interventions through biodiversity conservation, seamless ecosystem services (e.g., air purification, pollutant retention, noise, and temperature reduction), and cultural and aesthetic values. A healthy and diverse ecological environment is crucial for regional development to address environmental challenges, promote sustainability, and ensure human well-being. Previous studies indicated that the natural ecosystems (i.e., paddy fields, horticulture, and forest) in the EEC have experienced a reduction in both area and economic values (Boonyanam & Bejranonda, 2021, 2022; Tontisirin & Anantsuksomsri, 2021). If this trend continues in the future, it will be challenging to balance the tradeoffs between urban-industrial agglomeration and nature losses, especially under a high demand on land budget, increasingly intensive production, high water demand, and severity of drought and climate change (Mon et al., 2022; Nitivattananon & Srinonil, 2019; Promping & Tingsanchali, 2021; Samanmit et al., 2022; Wongsa et al., 2020). Therefore, monitoring and evaluating the ecological environment quality (EEQ) become even more important to serve as a

reference for planning and environmental protection for long-term development. Particularly in the dynamic context of regional development, there is currently a dearth of comprehensive studies addressing the regional environment and EEQ of this region.

Remote sensing facilitates the monitoring of EEQ by observing individual components and indicators of ecosystems, such as vegetation, moisture, desertification, and surface energy balance (Li et al., 2017; Song et al., 2020; Wang et al., 2016; Xu, Li, & Li, 2021). It should be noted that an ecosystem encompasses many components that complicatedly interact with each other in a system. Therefore, assessment using a single indicator cannot adequately reflect the ecological environment conditions (Yuan et al., 2021). Remote sensingbased ecological index (RSEI) was proposed to include the principal components of an ecological environment in order to quantify its quality (Hu & Xu, 2018). The RSEI is able to monitor the EEQ under various conditions, such as urban agglomeration, LULCC, land consolidation, mining activities, and geohazards (Airiken et al., 2022; Nie et al., 2021: Shan et al., 2019: Xu, Zhao, et al., 2021: Yan et al., 2021: Zhao et al., 2021). The EEQ depends on disparate factors at different extents, such as climate, terrain, soil properties, landscape patterns, and socioeconomic and anthropogenic elements (Geng et al., 2022; Tang et al., 2022; Wang, Ding, et al., 2022; Zhang, Feng, et al., 2022; Zhang, She, et al., 2022). However, the impacts of a certain factor on the EEQ in different regions and subregions may not be the same. For example, the influence of topographic features on EEQ in plains and mountainous areas can be contradictory.

The current approaches to analyzing EEQ (e.g., Pearson correlation, linear regression, and geodetection) may not adequately depict the spatial heterogeneity effects leading to underestimation, particularly over a large area (Geng et al., 2022; Pan et al., 2022; Tang et al., 2022). Geographically weighted regression (GWR) can take spatial heterogeneity into account to better reveal the relationship variations and local influence mechanisms compared to overall regression models (Wang, Wang, & Li, 2019; Zhi et al., 2020). The previous studies frequently analyze controlling factors of RSEI for each individual year (Sun et al., 2020; Zhang, She, et al., 2022). It would be more comprehensive to consider the environmental dynamics for the entire period to know how these factors influence long-term progress rather than individual contributions. Moreover, future simulation of EEQ is critical for environmental planning to anticipate potential challenges, minimize negative impacts, better manage resources, and promote sustainable development. Attempts to predict EEQ have been made based on impervious surfaces and population distribution (Xu et al., 2018). It should be noted that EEQ is controlled by a wide range of aspects. Some of them (e.g., climatic factors, LULUC) are even more important that should be involved to get more accurate future prediction of EEQ.

This research therefore aimed to investigate the changes in EEQ dynamics and the key factors driving the transitions following the regional reinvestment privileges implemented in the mid-2010s, and how its future trajectory will be in the coming years. We examined the EEQ dynamics and controlling factors for the whole period instead of individual years, as well as, scrutinize the spatial heterogeneities to

5772 WILEY-

reveal local environmental hindrances. We strived to simulate the future EEQ more comprehensively by including more related predictors compared to the previous model. Simultaneously, this study proposed a conventional clustering method based on degradation and improvement proportion to robustly evaluate environmental problems to determine the priority of vulnerable regions. The research findings are expected to be a useful reference for future regional planning and to suggest an assessment framework for the regional EEQ.

2 | METHODOLOGY

2.1 | Study areas

The EEC covers three eastern provinces (Chachoengsao, Chonburi, and Rayong) with approximate areas of 13,226 km² (Figure 1). Its topography is characterized by coastal plains alternating with highlands and low mountains (Aman et al., 2019). The major soil texture is sandy loam and clay loam (according to Thailand Land Development Department), which contributes to the difficulties in water retention. This region is dominated by the tropical humid climate with influences of the monsoons, with average rainfall is about 2085 mm. The winter and summer months (October–April) are considered as regional dry period with water deficit and the highest temperature often exceed 40°C (Aman et al., 2019; Phan & Manomaiphiboon, 2012; Promping & Tingsanchali, 2021).

These provinces are set up to be the strategic region since it is nearby the greater Bangkok metropolitan and the Gulf of Thailand with suitable topography for deep seaport and near to natural gas resources at Map Ta Phut (Rayong). Many industrial estates and logistical infrastructures have been established, such as the deep seaports and industrial estates of Laem Chabang, Sattahip, and Map Ta Phut (Muangpan & Suthiwartnarueput, 2019). Each province has been oriented to develop according to its advantages. For example, Rayong and Chonburi have been positioned to be industrial zones, Chachoengsao has been a hub for high-quality agriculture and aquaculture products. Therefore, the environmental quality and degradation in these territories are expected to be much disparate and even dominated by different driving forces, because they develop in divergent orientations.

2.2 | Data sources

Landsat 8 (OLI/TIRS) level 2 of surface reflectance images were the principal data source for EEQ monitoring as it provides both multispectral and thermal data, related to environmental severities such as drought and water shortage. The images were acquired within the

FIGURE 1 Location of the EEC in eastern Thailand and elevation in three provinces of Chachoengsao, Chonburi, and Rayong. [Colour figure can be viewed at wileyonlinelibrary.com]

period of 2013–2021. Specifically, an annual free-cloud composite was generated for each milestone based on cloud quality bitmask. The images were also processed by terrain correction to limit topographic effects due to elevation difference within the EEC. Water surfaces were also removed from the original images to avoid biased weight for the wetness indicator between the large water bodies and other areas (Xiong et al., 2021; Zhang, She, et al., 2022). In this study, water surfaces were masked by the consistent water mask, which is homogeneous water bodies detected by modified normalized difference water index (MNDWI) with a frequency of higher than 80% (Xu, 2006).

Land use and land cover (LUCC), especially the green and vegetation-rich categories, provides a variety of ecosystem services with high EEQ. Therefore, land use and land cover changes (LULCC) are the main artificial causes that substantially affect the EEQ (Airiken et al., 2022). We acquired land use maps in 2013 and 2021 from Thailand Land Development Department (LDD) to quantify and evaluate these impacts. The vector land use maps specify over 40 land use units ranging from forest to agriculture, mixed purposes, urban uses, and water bodies. These maps were then reclassified into six main

 TABLE 1
 Main LULC categories adopted from land use units of the LDD.

Land cover categories	Land use unit (level 2)			
Forest and perennial plants	Forest: evergreen forest, deciduous forest, forest plantation, and agroforestry. Perennial plants: orchards, and perennial.			
Grassland	Pasture and farmhouse, rangeland, and golf course.			
Wetland and water bodies	Aquaculture, aquatic plant, mangrove forest, swamp forest, marsh, and swamp.			
Cropland	Paddy fields, field crop, and horticulture.			
Construction	Transportation, city, town, village, institutional land, industrial land, and other built-up.			
Others	Mine, pit, salt flat, beach, garbage dump, and other miscellaneous land.			

 TABLE 2
 Spatial data acquired for controlling factors analysis.

-WILEY <u>5773</u>

land cover categories (Table 1) before converting to LULC raster maps at 30-m resolution for conventional comparison with Landsat data.

The ecological environment is influenced by various natural and anthropogenic agents. We selected the factors included in this research by drawing upon expert knowledge and a comprehensive literature review of empirical studies, ensuring the acquisition of realistic parameters in a cost-effective manner (Gardner et al., 2020; Kuhnert et al., 2010; Martin et al., 2005). This study collected a set of supporting data related to controlling factors (Table 2), which expected to affect the EEQ changes. These controlling factors embrace both natural and socioeconomic aspects to generalize the main drivers for EEQ changes in this region. The natural factors include topographic features, annual precipitation, mean temperature, and distance to major rivers. Topographic features such as elevation and slope can regulate the EEQ through related factors, for example, it is better in higher elevations with fewer disturbances from human activities (Geng et al., 2022; Yan et al., 2021). The topographic features are expected to substantially differentiate the EEO in the EEC as it is an area with diverse and complex topography (Figure 1). Temperature and precipitation represent climate factors, which greatly influence the ecological systems by affecting water availability, phenology, and ecosystem productivity (Sun et al., 2020; Wang, Ding, et al., 2022). For example, an increase in temperature and decrease in rainfall can lead to high barren land and degradation of EEQ (Bi et al., 2021). Along with natural rainfall, the hydrological systems also play a very essential role in providing water for ecosystems, especially for agricultural landscapes in the EEC. Therefore, we considered accessibility to the main rivers for EEQ.

Anthropogenic impacts embrace human activity inputs through the manners they use and manage landscapes (i.e., LULCC) and infrastructure projects. As a logistics and industrial hub, the EEC is promoted with extensive transportation projects, which imply severe impacts on ecosystems. Therefore, we also involved proximity to towns and transportation systems in the analysis to represent human accessibility and direct impacts on ecosystems and, to some extent, reflect the rapid development in this region compared to others (Nguyen et al., 2021; Lapuz et al., 2021). We also endeavor to include socioeconomic factors in the analyzes to obtain a diversely

Data	Extracted variable	Data format	Data source*
Open Street Map	Hydrological system (river), transportation system (road), and town location (town)	Vector shapefile	OSM
DEM (Digital Elevation Model)	Elevation (elv), slope (slope)	Raster/30 m	GISTDA
Globally harmonized nighttime light	Nighttime light density (NTL)	Raster/1000 m	Li et al. (2020), Li and Zhou (2017)
Thailand Population density	Population density (pop)	Raster/1000 m	WorldPop
Historical climate data	Precipitation (prep) and mean temperature (Tmean)	Raster/ ~5000 m	WorldClim

*OSM: Thailand Open Street Map data was downloaded at https://download.geofabrik.de; GISTDA: Geo-Informatics and Space Technology Development Agency; WorldPop: the research program based in the University of Southampton (https://www.worldpop.org); WorldClim: the database of high spatial resolution global weather and climate data (https://www.worldclim.org). representative set of factors. Population density is a widely adopted variable to reveal the contributions of social aspects to EEQ because urbanization is always associated with population growth and adverse impacts on environment (Cui et al., 2022; Geng et al., 2022).

The economic development, industrial development in the EEC, is one of the biggest levers to deterioration of EEQ and environmental pollution. In previous studies, it has been described by GDP (Gross domestic product) (Geng et al., 2022; Zhang, She, et al., 2022). However, the influence of GDP is relatively modest compared to other factors (Geng et al., 2022; Sun et al., 2020; Yuan et al., 2021). It can be traced back to the fact that most current GDP data are collected and synthesized at the subdistrict administrative level, so it is difficult to capture the local dynamics of EEQ changes. Meanwhile, nighttime light (NTL) can reflect economically active agents, population distribution, and density of urban socioeconomic activity (Cai et al., 2021). In the context of lacking direct economic values, NTL is proposed to be an appropriate variable to characterize the economic development, industrial growth, and poverty alleviation that even sufficiently reflects socioeconomic development specifically for the EEC (Hutasavi & Chen, 2022). Experts in ecology and artificial light at night (ALAN) have also confirmed the negative impacts of nighttime light pollution on the environment and ecology (i.e., from cell to ecosystems) because of the disrupted natural illumination cycle (Barentine et al., 2021; Gaston et al., 2013; Wang, Lv, et al., 2022). NTL is widely adopted in EEQ studies, and it is even a critical input in the coupling coordination degree (CCD) model to explore the coupling and coordination between ecological environment and development instead of GDP or other economic variables (Cai et al., 2021; Zheng et al., 2020). Therefore, we used the Harmonization of DMSP (Defense Meteorological Satellite Program) and VIIRS (Visible Infrared Imaging Radiometer Suite) nighttime light dataset to represent for socioeconomic aspect in our analyses. Only DN values of greater than 7.0 on NTL data were retained to limit uncertainty (Li et al., 2020; Li & Zhou, 2017).

2.3 Remote sensing ecological index (RSEI)

The EEQ is characterized by four components including greenness, dryness, wetness, and heat (Hu & Xu, 2018). First, vegetation coverage representing greenness was detected by normalized difference vegetation index (NDVI) (Tucker, 1979). Dryness is represented by sealed impervious surfaces and bare soils, which are frequently dry due to lacking vegetation coverage. Normalized difference built-up and bare soil index (NDBSI) was introduced to enhance bare soil in peri-urban by adding soil index (SI) into the index-based built-up index (IBI) (Hu & Xu, 2018; Xu, 2008). The wetness component of Tasseled Cap's components is adopted to reflect land surface moisture (LSM), which is obtained by an empirical formula for Landsat-8 data (Hu & Xu, 2018). Land surface temperature (LST) represents the main heat fluxes in the environment, which is estimated from thermal infrared band by converting measured DN values to at-satellite spectral

radiance and brightness temperature (T_B). The brightness temperature is then adjusted using NDVI-based land emissivity (ε) to obtain LST. The detailed steps to obtain LST from Landsat-8 image can be found in corresponding references (Ermida et al., 2020; Nguyen et al., 2022; Van De Griend & Owe, 1993).

A normalization procedure is applied to each spectral Index to solve the problems of uneven scale between indices and transform them into unitless quantities. Then, principal component analysis (PCA) is conducted on the four normalized indices to construct RSEI based upon only the first component (PC1-Equation 1) as it always presents higher than two-third of overall variance compared to other components (Xu et al., 2022).

$$RSEI = PC1[f(NDVI, NDBSI, LSM, LST)]$$
(1)

Subsequently, each annual RSEI image was normalized between 0 and 1 for peer comparison between different periods. Higher the normalized RSEI values, better the EEO is. The continuous RSEI images were divided into five equal intervals corresponding to five EEQ classes. Specifically, they include poor (0.0-0.2), fair (0.2-0.4), moderate (0.4-0.6), good (0.6-0.8), and excellent (0.8-1.0), which reflect the general EEQ, vegetation coverage, biodiversity, temperature, and wetness (Hu & Xu, 2018; Tang et al., 2022; Zhang, She, et al., 2022).

2.4 **Detection of EEQ changes**

Changes in EEQ were analyzed by reference year base and trend detection. The year of 2013 was considered the reference year basis as it marks the beginning of the period. Given the gradual decline in the quality of the EEQ over time, comparing subsequent years with the first year helps to minimize differences between periods and facilitate comparisons. The RSEI values in later years were in turn compared to the values at reference year to detect the major EEQ dynamics. More explicitly, the difference in RSEI between the considered year (RSEI^y) and the reference year (RSEI^{ref}) at pixel *i* is calculated by Equation 2.1. The threshold value of ±0.1 was proposed to identify the EEQ dynamics of significant degradation (2.2), no significant change (2.3), and significant improvement (2.4) (Wang, Ding, et al., 2022; Xu et al., 2019).

$$\Delta RSEI_{i}^{y} = RSEI_{i}^{y} - RSEI_{i}^{ref}$$
(2.1)

$$\begin{cases} \Delta RSEI_i^{\gamma} \le -0.1 & (2.2) \\ -0.1 \le \Delta RSEI_i^{\gamma} \le 0.1 & (2.3) \\ \Delta RSEI_i^{\gamma} \ge 0.1 & (2.4) \end{cases}$$

$$\text{RSEI}_i^{\gamma} \ge 0.1$$

With respect to trend analysis, the RSEI time series was analyzed by Mann-Kendall test and Thiel-Sen slope to quantify its monotonic trend over years. The positive slope represents ecological improvement, while the negative slope shows the ecological degradation (Yan et al., 2021). These two analyses were considered at pixel based.

2.5 | Determine controlling factors of ecological environment changes

2.5.1 | Data preparation

This study assessed the influences of controlling factors on the EEQ changes throughout the period instead of individual assessments for each year. RSEI trend slope (dependent variable) and 11 independent variables were consistently converted to raster with a pixel size of 1000 m regardless of whether the original data format was vector or raster. It should be noted that the location-based elements from the OSM (e.g., transportation, major rivers, and towns) were first utilized to estimate Euclidean distance to transform from vector to raster format before using their values for further analysis.

In essence, the independent variables can be separated into dynamic and static factors. The physical factors (e.g., hydrological systems, transportation, distance to towns, and topography) are relatively stable over time. We directly extracted these values for the analysis. In contrast, the remaining elements of NTL, population density, temperature, and precipitation vary over years depending on location specific. The time series of these dynamic elements were subjected to trend detection analysis as general trend synthesis for the whole period before taking them into the controlling factor analysis instead of using their values directly.

Although the LULC maps have been reclassified into six categories, assessing each LULC category separately is challenging because of the increase in the number of variables and the dispersion of their influences. The impacts of LULCC are quantified by a composite index of BAI (biological abundance index), which takes all land use types to indirectly reflect the abundance of ecological in a certain area (Tang et al., 2022; Wang, Jiang, et al., 2019). The higher the BAI values, the better the ecological environment is. In other words, BAI gives prominence to natural ecologies such as forest and wetland. Besides, this study considered the contributions of urban expansion on EEQ, which is represented by urban density estimated from LULC maps.

2.5.2 | Controlling factor detection

Firstly, all potential factors were analyzed their interrelationships by Pearson correlation test before significant variables were identified by multiple linear regression model. Bayesian Model Average (BMA) was applied to reveal all possible models with different sets of controlling variables instead of a single model as is often found by stepwise regression (Tran et al., 2018; Zhao et al., 2013). The importance of explanatory variables was identified by variable importance analysis, which reflects the contribution of each individual variable to the model (Luo et al., 2022). The higher the importance level, the more important the explanatory variable is.

The global regression model facilitates the detection of the general effect of each variable on EEQ changes, whether it is favorable or adverse. However, the effects of each factor may be substantially different among subregions within the EEC. For example, topographical effects on the EEQ may be opposite between highland and low-flat areas. Therefore, we applied geographic weighted regression (GWR) to analyze spatial heterogeneity and local effect of each variable to RSEI changes at commune/village level (Chen et al., 2022). Local regression models were evaluated by absolute variable coefficient values. The higher the absolute variable coefficient, the stronger the impact of the variable is.

2.6 | Simulation of ecological environmental changes in near future

Foremost, the LULC map in 2029 was predicted using Patchgenerating Land Use Simulation (PLUS) Model (Liang et al., 2021). Specifically, the 2013 LULC map was taken as a reference year to simulate the LULC in 2021. The performance of model was then evaluated by comparing the simulated LULC map in 2021 to the actual map. The overall accuracy of the LULC simulation achieved a confidence value of 80%. The simulated LULC map in 2029 was adopted to estimate BAI values and urban density in the corresponding year for RSEI estimation.

Subsequently, the model with the highest probability from BMA model selection (i.e., the first model in Section 2.5.2) was applied to quantify RSEI values in 2029. The static variables were directly adopted, while the dynamic variables should be replaced (Figure 6). Future precipitation and mean temperature were acquired from future climate data from CMIP6 scenarios. Besides, NLT is also an important dynamic variable in the selected model, however, there is no future prediction for this variable at present. Therefore, this study proposed a simple logarithm regression to get assumed values for NTL.

The simulated RSEI map was also reclassified into five EEQ classes and compared to the reference year to detect the EEQ trend in the near future. The EEQ changes were then analyzed at district level to detect the vulnerable hotspot of EEQ changes in the near future by a conventional clustering method based on mean values of degradation and improvement proportion. It was also applied for land use, land cover categories to study the environmental vulnerability of different land cover classes. This clustering method splits a group of districts (or land cover) into four main clusters with unique EEQ properties, which is meaningful for regional and environmental planning.

3 | RESULTS

3.1 | EEQ from 2013 to 2021

Ecological environment quality in the EEC was quantified by RSEI, which was classified into five classes corresponding to poor quality to excellent EEQ (Figure 2). In general, the poor EEQ mainly distributes along the coastal urban areas of western and southern parts. In Chachoengsao, the poor EEQ mostly centralizes in middle of the province.

Spatial distribution of five RSEI classes ranging from poor to excellent in the EEC provinces from 2013 to 2021. Chachoengsao, FIGURE 2 Chonburi, and Rayong are the top, middle, and down provinces. [Colour figure can be viewed at wileyonlinelibrary.com]

In contrast, the better EEQ is located on the west side on higher terrain with extensive forest and evergreen vegetation.

Quantitatively, majority of the area is dominated by good and excellent EEQ (Table 3). The good (0.6-0.8) and fair (0.2-0.4) EEQ are the two largest areas, accounting for 44.1%-51.0% and 19.9%-22.3%, respectively. These areas were usually found in the adjacent regions between moderate and poor eco-environment.

3.2 Spatiotemporal changes in ecological environment

The development of the EEC has been rapidly revived due to resurgent economic policies since the middle of the last decade. There are considerable changes in EEQ observed by trends of RSEI alongside this development. Although there is an insignificant change over the years for RSEI values of the entire EEC (p > 0.1), the RSEI fluctuations are more prominent for each individual province (Figure 3). The EEQ in Rayong province is better than the regional, and it improves over time. Although

the EEQ in Chachoengsao is not significantly different compared to the regional average, it has positive signs of improvement, especially in the end of the period. On the contrary, the EEQ in Chonburi has encountered a significant decrease in the last 3 years (p < 0.05).

Spatial distribution of EEQ changes was identified by comparing with RSEI values in 2013 (Figure 4). About half of the EEC area has a relatively stable EEQ over the period, yet this proportion tends to significantly narrow from 55.5% to 47.5% in 2014 and 2021 (p < 0.05), respectively. It is apparent that the deterioration of EEQ extensively distributed along the northeast-southwest corridor in Chonburi and Chachoengsao provinces, especially highly concentrated in the central north of Chachoengsao province (Figure 4a). In 2013, about 22.2% of the total area encountered environmental degradation, and it dramatically increased to 25.7% in 2021 ($p \approx 0.03$), corresponding to an area of 3320 km². However, it has also seen ecological amelioration in west side of Chachoengsao province, and east of the EEC on the highland areas. It rose significantly from 22.4% (2014) to 26.8% (2021) with $p \approx 0.02$. It implies that, in parallel with the environmental deterioration, an area of about 3457 km² has a positive change.

EEQ classes	2013	2014	2015	2016	2017	2018	2019	2020	2021
Poor (0.0-0.2)	9.5	13.2	12.3	13	11.8	10.8	12.4	13.4	13.3
Fair (0.2–0.4)	20.9	20.4	22.3	21.9	20.9	21.3	21	19.9	20.4
Moderate (0.4–0.6)	16.5	13	14.1	13.5	14.4	15.3	14.7	13	13.1
Good (0.6-0.8)	51	46.4	44.6	44.6	47.9	46.2	44.1	47.5	46
Excellent (0.8-1.0)	2.2	7.1	6.7	7	5.1	6.4	7.9	6.2	7.2

Note: The shades reflect proportion difference between EEQ classes.

FIGURE 3 Variations of average RSEI in the EEC and three provinces. [Colour figure can be viewed at wileyonlinelibrary.com]

3.3 | Controlling factors of ecological environment changes

The trend of RSEI over the period was quantified by trend detection of the RSEI time series (Figure 5). The RSEI trend is relatively consistent with the individual changes in each period in the previous section. It reflects the general trend in EEQ changes, in which high improvement is in the east Chachoengsao and high degradation along the coastal urban areas, especially in Chonburi. More explicitly, the significant change areas with *p*-value approaching 0 distributed in two margins of the region (Figure 5b).

3.3.1 | Principal controlling factors of RSEI changes

The static indicators and dynamic factors were considered their contribution to the EEQ trend. The BMA model selection suggests four highest probability models (Figure 6a). All the selected variables achieve freemulticollinearity with VIF <4 (Variable Inflation Factors). Seven variables consistently control the EEQ trend in the EEC, including distance to hydrological system (RIVER), distance to major transportation (ROAD), topography (SLOPE), land use/cover (BAI), socioeconomic representative (NTL), precipitation (PREP), and mean temperature (TMEAN). Besides, distance to town and urban density also regulate EEQ in two out of four models. Specifically, distance to road, distance to town, slope, BAI, urban density, and temperature are positively proportional to RSEI trend. Distance to river, NTL, and precipitation are inversely proportional to RSEI trend. On the contrary, population density and elevation have no direct contribution to RSEI trend. The first model reflects approximately 64.2% of the dataset, it is therefore the best model compared to others. Among the static and dynamic indicators, the most important factors regulate the EEQ trend are land use/cover (BAI), precipitation, distance to transportation, mean temperature, and distance to river, which importance level is always higher than 20% (Figure 6b). It is worthy to consider that LULCC is the most critical element influencing EEQ changes.

WILEY 5777

3.3.2 | Local heterogeneity of controlling factors

The global linear regression provides a general mechanism of RSEI changes over the period of the entire EEC. Every indicator apparently varies spatially across the region, and it ultimately affects the relationship between RSEI and explanatory variables. Therefore, GWR model for each variable was adopted to explore specific location where each element meaningfully stimulates or limits the EEQ through spatial clusters (Figure 7). Particular attention should be paid to areas that exhibit high R-squared values for both positive and negative effects, as identified by the right side of the bivariate scatter plot displaying dark-pink and dark-green hues. These regions indicate a crucial influence from the corresponding element.

More explicitly, increased precipitation dramatically encourages environmental improvement in two isolated regions in the central north of Chachoengsao and along the shared boundary of Chonburi and Rayong. Changes in average temperature are meaningful in the southwest-northeast corridor of the EEC. Elevation and slope especially dominate EEQ in two parts, where high elevation and slope intend to boost the EEQ, including the southernmost cliff of Chonburi and middle terrain of central Chachoengsao and Chonburi. Urban development characterized by built-up and impervious surfaces deteriorates environment extensive areas in the EEC. It is apparent in the coastal city chain, adjacent area in Chonburi, and southeast Chachoengsao. LULCC substantially affects the environment of the entireEEC, especially in coastal areas, central Rayong, and southeast Chachoengsao. Impact patterns of distance to river are relatively similar to terrain, which are symmetrical in relation to southwestnortheast and northwest-southeast corresponding to positive and negative effects, respectively. The patterns of infrastructures such as distance to towns and major roads are also relatively analogous, which strongly positive impacts in Chachoengsao at connecting point with Bangkok's metropolitan and southwest-northeast corridor. Additionally, increasing population density is convinced to impair the environment in major areas of Chachoengsao and the contiguous area of western Chonburi. Whereas socioeconomic development represented

FIGURE 4 (a) Spatial distribution of ecological environment fluctuations of the entire EEC region and (b) corresponding area proportion in three classes of no change, degradation, and improvement. [Colour figure can be viewed at wileyonlinelibrary.com]

by NTL density considerably aggravates ecology in the east and south coastal cities and along the southwest-northeast route.

3.4 | Ecologically vulnerable regions under nearfuture LULCC

Based on LULC data from 2013 to 2021, this study simulated LULC in 2029, applying the concept of "business as usual" without considerable changes in a short period of time. Subsequently, the simulated LULC data in 2029 was adopted to estimate potential changes in EEQ changes (Figure 8). Under these assumptions, LULC in the EEC will continue to vary in 2029, that is, 28.2% of current areas will be transformed into other LULC categories relevant to 3759 km². Specifically, about 24.5% of land cover change area will be converted into grassland. It will be then followed by orchards and perennial gardens (21.3%). Built-up and grassland areas will account for about 20% of each type.

Under this LULCC scenario, it is apparent that BAI values will mostly improve in both west and east sides of Chachoengsao.

(a) RIVER

ROAD

TOWN ELV

SLOPE BAI

URBAN NTL POP

PREP TMEAN

FIGURE 5 (a) RSEI trend analysis over the period, red and orange represent deterioration trend, green is amelioration trend, and white is insignificant change; (b) significance level of trend detection, dark-red and red are statistically significant regions; (c) changing classes of ecological environment, red is significant deterioration and green is significant improvement. [Colour figure can be viewed at wileyonlinelibrary.com]

10

0

BA

RIVER ROAD

Variables

TOWN

SLOPE INFAN

URBAN

PREP

209

~i~

(a) Four possible models selected using BMA, red shade is positive variables, blue shade is negative variables, and white is FIGURE 6 insignificant variables, width of horizontal axis is proportional to model probability; (b) variable importance analysis, shading opacity is proportional to importance level. [Colour figure can be viewed at wileyonlinelibrary.com]

3

4

2

1

Model #

FIGURE 7 Spatial distribution of GWR for each controlling factor in the entire EEC region based on subdistrict data. Bivariate maps illustrate data fit and influence trend. [Colour figure can be viewed at wileyonlinelibrary.com]

However, the major trend is still deterioration in the entire EEC at different extents, especially in adjacent and emerging urban areas. The RSEI classes will therefore continue to be declined along the coastal curve in city chain and these impacts will gradually dominate adjacent areas in both area and severity level. Specifically, only 0.1% of total area will improve EEQ, while 24.1% will expect to be worse in the future (Figure 8f).

It is worthy to note that the EEQ changes in the EEC are varying. Chachoengsao is relatively stable, with 43.4% of the unchanged EEQ. Chonburi is highlighted with 49.8% of degraded environment, while 79.1% of Rayong tends to be improved in the future. Two axes representing for mean area proportion of degradation and improvement classify 29 districts into two clusters (Figure 9). A district with a degradation value of higher than the mean value is a high degradation district, conversely a district with a low degradation level. It is also applicable for improvement. Based on this concept, the districts on the second quadrant (e.g., Bo Thong, Sanam Chai Khet, Rayong, Klaeng, and Chachoengsao) are the most unstable districts with a high proportion of degradation and improvement EEQ. A cluster of nine districts in the bottom-right quadrant (e.g., Phanat Nikhom, Ban Bueng, Si Racha, Bang Lamung, Bang Nam Priao, Phanom Sarakham, Plaeng Yao, Pluak Daeng, and Ban Khai) will tend toward degradation rather than ecological improvement. Tha Takiap (Chonburi – top-left quadrant) will be the only district showing ecological improvement. In contrast, the EEQ in the remaining districts (bottom left) will be less stable compared to other entities.

4 | DISCUSSION

4.1 | Rapid and unstable changes in ecological environment

The development of the EEC has essentially been revived by a chain of tourism–logistic–industrial cities along the coast. Therefore, it is apparent that EEQ has changed dramatically compared to the time before its revival (Figure 4). The EEQ along this corridor has been strongly differentiated with low EEQ. It is increasingly better along

FIGURE 8 Predicted LULC in 2029 compared to 2021 and difference BAI values between 2021 and 2029, corresponding ecological environment index (RSEI), and ecological environmental change classes in 2029. [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 9 Area proportion of ecological environment changes in districts of the EEC under future scenario. Horizontal and vertical lines present mean values for environmental degradation and improvement values, respectively. [Colour figure can be viewed at wileyonlinelibrary.com]

the coastal-inland gradient, where artificial impacts such as land use transformation, industrial productions, and infrastructure projects are gradually declined in both quantity and intensity (Figures 2 and 5).

Although this region holds higher a half of total area with good and excellent environment accumulatively, it should be noted that the low EEQ has extended (about 0.48% per year, Table 3). Improvement signs

FIGURE 10 (a) Area of major LULCC and RSEI change magnitude for each LULCC class. Columns represent RSEI magnitude, and lollipop sticks are changing area; (b) RSEI values and trends for different LULC categories. [Colour figure can be viewed at wileyonlinelibrary.com]

were also found in the EEC, however, it is mainly distributed in the eastern forest and highland areas. It implies a great geographical heterogeneity of EEQ and its controlling factors, which was only detected by the GWR instead of general monotonic impacts by linear regression (Figure 7).

The regional EEQ has slightly changed, while each province has unique characteristics driven by each provincial context. Chachoengsao is relatively stable with cultivation practices fostered by the Bangpakong river (Wongsa et al., 2020). However, extensive cropland in the central area is more sensitive than elsewhere, especially after the harvesting period when barren land is exposed to high temperature (Yaung et al., 2021). It is amplified during the strong El-Niño year (2015-2016), when RSEI dipped below the average in 2016 (Figure 3). The EEQ in Chonburi has strongly decreased because this is the province with the longest coastline and dense industrial estates. It also holds three of five rapid developing cities in the coastal corridor. Rayong is an opposite case when the EEQ has gradually improved. It was even stable in the 2015/2016 El-Niño year. Inland areas of Chachoengsao and Chonburi may often face water deficit due to low precipitation, while Rayong is irrigated by five reservoirs and irrigation projects. These projects have released water stresses, and the role of water management has been convinced during this severe drought. The high improvement areas are mostly distributed within the Rayong and Phrasae irrigation projects (Vannametee et al., 2022), where efficient water management is assumed to greening these areas.

4.2 | High dependency of ecological environment on LULC and natural conditions

The EEQ is dominated by a range of elements from nature to anthropogenic factors. The dominant factor varies widely among the regions because of regional unique characteristics such as climate, topography, major LULC, and development levels (Figure 7). For example, Wang, Ding, et al. (2022) indicated the importance of climate factors to EEQ, while these influences were relatively fuzzy in a coal mining area (Nie et al., 2021). However, LULCC and natural conditions are the major agents influencing the EEQ that have been consistently detected in many studies (Wang, Ding, et al., 2022; Yuan et al., 2021; Zhang, Feng, et al., 2022; Zhang, She, et al., 2022). Our findings are in line with the previous studies on the contributions of these two factors.

LULCC is the most important controlling factor to EEQ changes (i.e., the highest importance level across the models-Figure 6, Section 3.3.1). Its effect is also relatively consistent throughout the region than other elements (Section 3.3.2). Specifically, reforestation and wetland restoration alleviate ecological stresses in the regional environment (Figure 10a). It has witnessed the forest restoration in the east side. In this study, the broad forest class embraces forest categories and perennial plantations (e.g., orchards and industrial plants). The joint effect of forest restoration, development of geographical identities of tropical fruits and perennial agricultural products that contributes to greening the fallow lands and facilitatesa better EEQ (Tontisirin & Anantsuksomsri, 2021). It somehow weakens the negative impacts from urbanization on EEQ in general. Additionally, swamp forest and perennial plantation are the most contributors to improve EEQ, while deciduous forest, and forest plantation are relatively sensitive (Figure 10b). The severely degraded areas are distributed in urban areas, while the moderately degraded areas are mainly spread over arable land (e.g., paddy, cropland, and horticulture; Figure 5). Therefore, cropland is the second most challenging LULC because of its negative impacts during the crop idle period. Among urban LULC

categories, transportation projects substantially exacerbate the degradation.

In addition to LULCC and socioeconomic factors, precipitation and mean temperature consistently affect RSEI across the models (Figure 7, Section 3.3.2). However, its spatial homogeneity is relatively low compared to LULCC (Figure 7), which is even dominated by topographical patterns. The high terrain in southwest-northeast forms differences in climate patterns (Figure 1), and ultimately controls EEQ. The high terrain plays the role as a "natural wall" blocking southwest monsoon wind and leading to high precipitation along the coastal cities, while eastern forest and perennial plantations encounter water deficit. In contrast, it intensifies water stress during the dry season under northeast monsoon wind, which raises high temperature in the inland plantations. It means the EEC always confronts water stress due to its natural conditions.

4.3 | Policy implications

A combination of future prediction, spatial heterogeneity analysis using GWR, and conventional clustering (Figure 9) revealed future EEQ, dynamics, and obstacles of each subregion. This location-based information will be useful for regional planning, which may have to be tailored to each subregion. Specifically, the regional EEQ is predicted to be declined in quality and the deteriorated areas will expand forward inland areas in future contexts of LULCC and climate change (Section 3.4). The buffer zones between these two regions are "reformed land" under the Royal Decree, which greens deforestation areas to become agricultural lands. These areas would play a vital role in escalating the general EEQ. Hence, plant-orientated planning for these areas should weigh between cropland and perennial plants to promote ecological benefits against trade-offs.

Presently, the regional EEQ is relatively favorable, however, it is originated from forest offsets. Therefore, forest protection and restoration should be highly encouraged by integrated strategies, such as forest-dependent livelihood and community forest management (Kroeksakul et al., 2018). There is an enormous difference between two sides of the EEC. The regional master plan has a very limited land allocation for greening promotion along the west corridor, while this is the most populous region with numerous industry activities. Thus, there is a high demand of increasing green infrastructures in the west EEC. The most vulnerable districts (e.g., Phanom Sarakham, Bang Bueng, Siracha, and other districts in the same cluster) should be prioritized for greening interventions. While the western urban areas seem compact, the greening actions should be firstly deployed by potential entities such as community and government. Institutional land accounts for 10.9% of urban lands in the EEC, considerable higher than in other regions. Yet, their land use is often low efficiency with high unused rate. Advocating for greening campaigns on unused land is a potential solution to increase green spaces in dense urban areas.

Furthermore, the EEC will have more extensive transportation projects to support logistics and regional connection. Yet, this is the

LULC with the highest impact on EEQ (Figures 7, 8c,e, and 10b). Integrated assessment and scenarios should be insightfully considered to limit negative impacts on EEQ, especially in eastern Chachoengsao.

The most concerned issue in the EEC is water supply and management, reflected by correlation with distance to river and climate elements. Mountainous terrain, sandy loam soil, and water demand for production jointly intensify the regional water deficit, especially in paddy and cropland in middle north Chachoengsao. In the future, it will be more severe for the east agricultural zones when it will confront higher temperature and low precipitation. Water stress was gradually released in Rayong by the irrigation projects, which is a valuable lesson for both Chonburi and Chachoengsao. Plant structure should also be considered to reduce water demand and efficiency with appropriate water regimes (e.g., Alternate Wet and Dry Irrigation). The seasonal bare land is a hindrance for local climate and EEQ (Nguyen et al., 2021). It frequently distributes in Chachoengsao, which should be covered by suitable vegetation, while construction solutions for irrigation should be parallelly conducted in these areas to reduce exposure during dry season and to improve the EEQ.

Although this study attempted to take numerous factors reflecting different aspects into account for controlling factors assessment and future prediction of EEQ, non-availability of some socioeconomic indicators in this region may lead to an inadequate assessment. As a dynamic hub of industrial production, the influences of economic scale and industrial structure can be more significant than elsewhere. Therefore, specific economic and industrial development indicators should be collected and considered in future research for more accurate and comprehensive assessments.

5 | CONCLUSION

This study adopts the concept of remote sensing-based ecological index (RSEI) to monitor and assess the dynamics of EEQ in the EEC under rapid resurgence of this special economic zone. The regional EEQ is apparently differentiated from east to west and coast to inland. The EEQ of coastal areas is lower than others due to high concentration of population, city chains, numerous infrastructures, and industrial estates. Conversely, the western forest plays a crucial function to make up the environmental degradation in the east, which even reveals improvement signs due to perennial plantations on "reformed land" under the Royal Decree.

Within a short period of time, the region has experienced considerable changes in EEQ, which has strongly deteriorated along the coast, its adjacent regions, and agricultural zones in central Chachoengsao. The changes in EEQ are mainly controlled by proportion of built-up, LULCC, distance to roads and rivers, precipitation, temperature, slope, and NTL. Particularly, LULCC is the most important contributor, which consistently influences EEQ changes the entire region. Meanwhile, the impacts of other elements are frequently heterogeneous in terms of spatial patterns, where the spatial distribution is differentiated by northeast-southwest and northwestsoutheast axes.

5784 WILEY-

This study also attempted to include future LULCC scenario and more predictors in future EEQ simulation. Under the future scenario of local development, LULCC will be seamlessly changed. It along with future climate change will considerably affect the regional EEQ over one-fourth of the total area. Ultimately, 24.1% of the total area will be degraded in 2029. The districts were sorted into four clusters, with the worthiest concern should belong to unstable and degraded districts. These districts will have a high degree of degraded environment, the local authorities therefore should have appropriate interventions to deal with this deterioration.

Nevertheless, policymakers and authorities should thoroughly consider both potential opportunities and challenges to weigh and propose a vision that is appropriate to the regional natural, infrastructural, and social characteristics of this region. The LULCC due to rapid development and influences of topographic characteristics, causing different climate patterns and water deficit, which should be involved in future plans, including suitable crop structures, efficient water management, forest conservation and restoration, and green infrastructures. The uncertainties of legal foundations and scientific evidence should be gradually dimmed to promote environmental responsibility of relevant organizations and businesses toward sustainable development of the EEC under different challenges.

AUTHOR CONTRIBUTIONS

Can Trong Nguyen (CTN): conceptualization, methodology, formal analysis, visualization, data curation, writing—original draft, review and editing; Rungnapa Kaewthongrach (RK): conceptualization, supervision, writing—review and editing; Sittiporn Channumsin (SC): writing—review and editing; Mitchai Chongcheawchamnan (MC): writing—review and editing; Thanh-Noi Phan (TNP): writing—review and editing; Damrongrit Niammuad (DN): conceptualization, supervision, writing—review and editing. All authors have read and approved the published work.

ACKNOWLEDGMENTS

We express our gratitude to the Land Development Department (LDD) for providing land use data in this research. We are thankful Dr. Natthawat Hongkarnjanakul, Dr. Amornchai Prakobya, Pronthep Pipitsunthonsan and Huda Kosumphan for their discussion and invaluable support. We also extend our appreciation to Ratchaphol Ploythet for assistance in data collection. CTN shows special thanks to his "sidekicks" and SM for their moral support. Lastly, we acknowledge the Editor and Reviewers for their time and efforts in improving the quality of this work.

FUNDING INFORMATION

This research received no external funding.

CONFLICT OF INTEREST STATEMENT

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available from the corresponding author upon reasonable request.

ORCID

Can Trong Nguyen ^b https://orcid.org/0000-0003-0471-4062 Rungnapa Kaewthongrach ^b https://orcid.org/0000-0003-4142-5411 Sittiporn Channumsin ^b https://orcid.org/0000-0003-2344-7676 Thanh-Noi Phan ^b https://orcid.org/0000-0002-2747-5028

REFERENCES

- Airiken, M., Zhang, F., Chan, N. W., & Kung, H. T. (2022). Assessment of spatial and temporal ecological environment quality under land use change of urban agglomeration in the north slope of Tianshan, China. *Environmental Science and Pollution Research*, 29, 12282–12299. https://doi.org/10.1007/s11356-021-16579-3
- Aman, N., Manomaiphiboon, K., Pengchai, P., Suwanathada, P., Srichawana, J., & Assareh, N. (2019). Long-term observed visibility in eastern Thailand: Temporal variation, association with air pollutants and meteorological factors, and trends. *Atmosphere*, 10, 122. https:// doi.org/10.3390/atmos10030122
- Barentine, J. C., Walczak, K., Gyuk, G., Tarr, C., & Longcore, T. (2021). A case for a new satellite mission for remote sensing of night lights. *Remote Sensing*, 13, 1–27. https://doi.org/10.3390/rs13122294
- Bhrammanachote, W. (2019). The review of Thailand's eastern economic corridor: Potential and opportunity. *Local Administration Journal*, 12, 73–86.
- Bi, X., Chang, B., Hou, F., Yang, Z., Fu, Q., & Li, B. (2021). Assessment of spatio-temporal variation and driving mechanism of ecological environment quality in the arid regions of central asia, Xinjiang. *International Journal of Environmental Research and Public Health*, 18(13), 7111. https://doi.org/10.3390/ijerph18137111
- Boonkaewwan, S., Sonthiphand, P., & Chotpantarat, S. (2021). Mechanisms of arsenic contamination associated with hydrochemical characteristics in coastal alluvial aquifers using multivariate statistical technique and hydrogeochemical modeling: a case study in Rayong province, eastern Thailand. Environmental Geochemistry and Health, 43, 537– 566. https://doi.org/10.1007/s10653-020-00728-7
- Boonyanam, N., & Bejranonda, S. (2021). Ecosystem service value of the mixed land use pattern in asia: Thailand's experience. Applied Environmental Research, 43, 56–72. https://doi.org/10.35762/AER.2021.43.1.5
- Boonyanam, N., & Bejranonda, S. (2022). The driving force of urban water body change in Chonburi Province, Thailand. Applied Environmental Research, 44, 59–75. https://doi.org/10.35762/aer.2022.44.3.5
- Cai, B., Shao, Z., Fang, S., Huang, X., Huq, M. E., Tang, Y., Li, Y., & Zhuang, Q. (2021). Finer-scale spatiotemporal coupling coordination model between socioeconomic activity and eco-environment: A case study of Beijing, China. *Ecological Indicators*, 131, 108165. https://doi. org/10.1016/j.ecolind.2021.108165
- Cheevapattananuwong, P., Baldwin, C., Lathouras, A., & Ike, N. (2020). Social capital in community organizing for land protection and food security. *Land*, 9(3), 69. https://doi.org/10.3390/land9030069
- Chen, Z., Zhang, S., Geng, W., Ding, Y., & Jiang, X. (2022). Use of geographically weighted regression (GWR) to reveal spatially varying relationships between Cd accumulation and soil properties at field scale. *Land*, 11(5), 635. https://doi.org/10.3390/land11050635
- Cui, R., Han, J., & Hu, Z. (2022). Assessment of spatial temporal changes of ecological environment quality: A case study in Huaibei City, China. Land, 11, 1–19. https://doi.org/10.3390/land11060944
- Diep, N. T. H., Nguyen, C. T., Diem, P. K., Hoang, N. X., & Kafy, A.-A. (2022). Assessment on controlling factors of urbanization possibility in

-WILEY 5785

a newly developing city of the Vietnamese Mekong delta using logistic regression analysis. *Physics and Chemistry of the Earth, Parts A/B/C,* 126, 103065. https://doi.org/10.1016/j.pce.2021.103065

EECO. (2018). Eastern economic corridor office website.

- Ermida, S. L., Soares, P., Mantas, V., Göttsche, F. M., & Trigo, I. F. (2020). Google earth engine open-source code for land surface temperature estimation from the landsat series. *Remote Sensing*, 12, 1–21. https:// doi.org/10.3390/RS12091471
- Gardner, E., Breeze, T. D., Clough, Y., Smith, H. G., Baldock, K. C. R., Campbell, A., Garratt, M. P. D., Gillespie, M. A. K., Kunin, W. E., McKerchar, M., Memmott, J., Potts, S. G., Senapathi, D., Stone, G. N., Wackers, F., Westbury, D. B., Wilby, A., & Oliver, T. H. (2020). Reliably predicting pollinator abundance: Challenges of calibrating processbased ecological models. *Methods in Ecology and Evolution*, *11*, 1673– 1689. https://doi.org/10.1111/2041-210X.13483
- Gaston, K. J., Bennie, J., Davies, T. W., & Hopkins, J. (2013). The ecological impacts of nighttime light pollution: A mechanistic appraisal. *Biological Reviews*, 88, 912–927. https://doi.org/10.1111/brv.12036
- Geng, J., Yu, K., Xie, Z., Zhao, G., Ai, J., Yang, L., Yang, H., & Liu, J. (2022). Analysis of spatiotemporal variation and drivers of ecological quality in Fuzhou based on RSEI. *Remote Sensing*, 14(19), 4900. https://doi.org/ 10.3390/rs14194900
- Hu, X., & Xu, H. (2018). A new remote sensing index for assessing the spatial heterogeneity in urban ecological quality: A case from Fuzhou City, China. *Ecological Indicators*, 89, 11–21. https://doi.org/10.1016/j. ecolind.2018.02.006
- Hutasavi, S., & Chen, D. (2022). Exploring the industrial growth and poverty alleviation through space-time data mining from night-time light images: A case study in eastern economic corridor (EEC), Thailand. International Journal of Remote Sensing, 1–23. https://doi.org/10. 1080/01431161.2022.2112111
- Kroeksakul, P., Srichiwong, P., Ngamniyom, A., Silprasit, K., Suthisaksophon, P., & Jantaraworachat, N. (2018). The study of community forest management in eastern economic corridor: Case in Nakhon Nayok. *Journal of Social Sciences Research*, 4, 276–284. https://doi.org/10.32861/jssr.411.276.284
- Kuhnert, P. M., Martin, T. G., & Griffith, S. P. (2010). A guide to eliciting and using expert knowledge in Bayesian ecological models. *Ecology Letters*, 13, 900–914. https://doi.org/10.1111/j.1461-0248.2010. 01477.x
- Lapuz, R. S., Jaojoco, A. K. M., Reyes, S. R. C., De Alban, J. D. T., & Tomlinson, K. W. (2021). Greater loss and fragmentation of savannas than forests over the last three decades in Yunnan Province, China. *Environmental Research Letters*, 17(1), 014003. https://doi.org/10. 1088/1748-9326/ac3aa2
- Li, X., & Zhou, Y. (2017). A stepwise calibration of global DMSP/OLS stable nighttime light data (1992-2013). *Remote Sensing*, 9(6), 637. https:// doi.org/10.3390/rs9060637
- Li, X., Zhou, Y., Zhao, M., & Zhao, X. (2020). Harmonization of DMSP and VIIRS nighttime light data from 1992–2021 at the global scale. figshare. https://doi.org/10.6084/m9.figshare.9828827.v7
- Li, Y., Cao, Z., Long, H., Liu, Y., & Li, W. (2017). Dynamic analysis of ecological environment combined with land cover and NDVI changes and implications for sustainable urban-rural development: The case of mu us Sandy land, China. *Journal of Cleaner Production*, 142, 697–715. https://doi.org/10.1016/j.jclepro.2016.09.011
- Liang, X., Guan, Q., Clarke, K. C., Liu, S., Wang, B., & Yao, Y. (2021). Understanding the drivers of sustainable land expansion using a patchgenerating land use simulation (PLUS) model: A case study in Wuhan, China. Computers, Environment and Urban Systems, 85, 101569. https://doi.org/10.1016/j.compenvurbsys.2020.101569
- Lunsamrong, C., & Tippichai, A. (2022). Energy demand modeling for the eastern economic corridor of Thailand: A case study of Rayong Province. *International Journal of Energy Economics and Policy*, 12, 497–501. https://doi.org/10.32479/ijeep.12884

- Luo, Y., Yan, J., McClure, S. C., & Li, F. (2022). Socioeconomic and environmental factors of poverty in China using geographically weighted random forest regression model. *Environmental Science and Pollution Research*, 29, 33205–33217. https://doi.org/10.1007/s11356-021-17513-3
- Martin, T. G., Kuhnert, P. M., Mengersen, K., & Possingham, H. P. (2005). The power of expert opinion in ecological models using Bayesian methods: Impact of grazing on birds. *Ecological Applications*, 15, 266– 280. https://doi.org/10.1890/03-5400
- Mekparyup, J., & Saithanu, K. (2020). Air quality index prediction in the eastern regions of Thailand with. *International Journal of Applied Engineering Research*, 15, 436–444.
- Mon, M. T., Chaisri, B., Piemjaiswang, R., Phetrak, A., Chanpiwat, P., & Kittipongvises, S. (2022). Application of Geographic Information System in Salinity Distribution of the Bang Pakong River, Thailand. 11th International Conference on Environmental Engineering, Science and Management. Bangkok, Thailand.
- Muangpan, T., & Suthiwartnarueput, K. (2019). Key performance indicators of sustainable port: Case study of the eastern economic corridor in Thailand. Cogent Business and Management, 6(1), 1603275. https://doi. org/10.1080/23311975.2019.1603275
- Ngampramuan, S., & Piboonsate, W. (2021). Impacts of Lancang-Mekong cooperation on Chinese investment In eastern economic corridor. ABAC Journal, 41, 212–227.
- Nguyen, C. T., Chidthaisong, A., Kieu Diem, P., & Huo, L.-Z. (2021). A modified bare soil index to identify bare land features during agricultural fallow-period in Southeast Asia using Landsat 8. *Land*, 10, 231. https://doi.org/10.3390/land10030231
- Nguyen, C. T., Chidthaisong, A., Limsakul, A., Varnakovida, P., Ekkawatpanit, C., Diem, P. K., & Diep, N. T. H. (2022). How do disparate urbanization and climate change imprint on urban thermal variations? A comparison between two dynamic cities in Southeast Asia. *Sustainable Cities and Society*, 82, 103882. https://doi.org/10.1016/j. scs.2022.103882
- Nguyen, C. T., Hong, D. N. T. & Sanwit, I. (2021). Direction of urban expansion in the Bangkok Metropolitan Area, Thailand under the impacts of a national strategy. *Vietnam Journal of Earth Sciences*, 43(3), 380–398.
- Nie, X., Hu, Z., Zhu, Q., & Ruan, M. (2021). Research on temporal and spatial resolution and the driving forces of ecological environment quality in coal mining areas considering topographic correction. *Remote Sensing*, 13, 1–22. https://doi.org/10.3390/rs13142815
- Nitivattananon, V., & Srinonil, S. (2019). Enhancing coastal areas governance for sustainable tourism in the context of urbanization and climate change in eastern Thailand. *Advances in Climate Change Research*, 10, 47–58. https://doi.org/10.1016/j.accre.2019.03.003
- Niyomsilp, E., Worapongpat, N., & Bunchapattanasakda, C. (2020). Thailand's eastern economic corridor (EEC): According to Thailand 4.0 economic policy. *Journal of Legal Entity Management and Local Innovation*, 2, 219–227.
- Pan, W., Wang, S., Wang, Y., Yu, Y., & Luo, Y. (2022). Dynamical changes of land use/land cover and their impacts on ecological quality during China's reform periods: A case study of Quanzhou city, China. *PLoS ONE*, 17(12), e0278667. https://doi.org/10.1371/journal.pone. 0278667
- Phan, T. T., & Manomaiphiboon, K. (2012). Observed and simulated sea breeze characteristics over Rayong coastal area, Thailand. *Meteorology* and Atmospheric Physics, 116, 95–111. https://doi.org/10.1007/ s00703-012-0185-9
- Promping, T., & Tingsanchali, T. (2021). Meteorological drought Hazard assessment for agriculture area in eastern region of Thailand. *The 26th National Convention on Civil Engineering*. https://conference.thaince. org/index.php/ncce26/article/view/1175
- Saetang, P. (2022). The role of citizen science in policy advocacy and building just and ecologically sustainable communities in Thailand. In M. Indrawan, J. B. Luzar, H. Hanna, & T. Mayer (Eds.), *Civic engagement in*

5786 WILEY-

Asia: Transformative learning for a sustainable future (pp. 47-60). Springer.

- Samanmit, P., Vongphet, J., & Kwanyuen, B. (2022). Drought analysis in the eastern economic corridor by using. Naresuan University Engineering Journal, 17, 47–53.
- Shan, W., Jin, X., Ren, J., Wang, Y., Xu, Z., Fan, Y., Gu, Z., Hong, C., Lin, J., & Zhou, Y. (2019). Ecological environment quality assessment based on remote sensing data for land consolidation. *Journal of Cleaner Production*, 239, 118126. https://doi.org/10.1016/j.jclepro.2019. 118126
- Song, W., Song, W., Gu, H., & Li, F. (2020). Progress in the remote sensing monitoring of the ecological environment in mining areas. *International Journal of Environmental Research and Public Health*, 17(6), 1846. https://doi.org/10.3390/ijerph17061846
- Sun, C., Li, X., Zhang, W., & Li, X. (2020). Evolution of ecological security in the tableland region of the Chinese loess plateau using a remotesensing-based index. Sustainability, 12(8), 3489. https://doi.org/10. 3390/SU12083489
- Tang, H., Fang, J., Xie, R., Ji, X., Li, D., & Yuan, J. (2022). Impact of land cover change on a typical mining region and its ecological environment quality evaluation using remote sensing based ecological index (RSEI). *Sustainability*, 14(9), 12694. https://doi.org/10.3390/su141912694
- Thongphunchung, K., Charoensuk, P., U-Tapan, S., Loonsamrong, W., Phosri, A., & Mahikul, W. (2022). Outpatient department visits and mortality with various causes attributable to ambient air pollution in the eastern economic corridor of Thailand. *International Journal of Environmental Research and Public Health*, 19(13), 7683. https://doi.org/10. 3390/ijerph19137683
- Tipayalai, K. (2020). Impact of international labor migration on regional economic growth in Thailand. *Journal of Economic Structures*, 9(1), 15. https://doi.org/10.1186/s40008-020-00192-7
- Tontisirin, N., & Anantsuksomsri, S. (2021). Economic development policies and land use changes in Thailand: From the eastern seaboard to the eastern economic corridor. Sustainability, 13(11), 6153. https:// doi.org/10.3390/su13116153
- Tran, H., Kim, J., Kim, D., Choi, M., & Choi, M. (2018). Impact of air pollution on cause-specific mortality in Korea: Results from Bayesian model averaging and principle component regression approaches. *Science of the Total Environment*, 636, 1020–1031. https://doi.org/10.1016/j. scitotenv.2018.04.273
- Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. *Remote Sensing of Environment*, *8*, 127–150. https://doi.org/10.1016/0034-4257(79)90013-0
- Van De Griend, A. A., & Owe, M. (1993). On the relationship between thermal emissivity and the normalized difference vegetation index for natural surfaces. *International Journal of Remote Sensing*, 14, 1119– 1131. https://doi.org/10.1080/01431169308904400
- Vannametee, E., Udomdechawet, P., & Pannoon, P. (2022). An analysis and assessment of water adequacy for economic crop cultivation in Rayong Province. *Journal of Letters*, 51, 21–50.
- Wang, C., Jiang, Q., Shao, Y., Sun, S., Xiao, L., & Guo, J. (2019). Ecological environment assessment based on land use simulation: A case study in the Heihe River basin. *Science of the Total Environment*, 697, 133928. https://doi.org/10.1016/j.scitotenv.2019.133928
- Wang, H., Ning, X., Zhu, W., & Li, F. (2016). Comprehensive evaluation of urban sprawl on ecological environment using multi-source data: A case study of Beijing. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences–ISPRS Archives, 41, 1073–1077. https://doi.org/10.5194/isprsarchives-XLI-B8-1073-2016
- Wang, J., Ding, J., Ge, X., Qin, S., & Zhang, Z. (2022). Assessment of ecological quality in Northwest China (2000–2020) using the Google earth engine platform: Climate factors and land use/land cover contribute to ecological quality. *Journal of Arid Land*, 14, 1196–1211. https://doi.org/10.1007/s40333-022-0085-x

- Wang, J., Wang, S., & Li, S. (2019). Examining the spatially varying effects of factors on PM2.5 concentrations in Chinese cities using geographically weighted regression modeling. *Environmental Pollution*, 248, 792– 803. https://doi.org/10.1016/j.envpol.2019.02.081
- Wang, Y., Lv, C., Pan, X., Liu, Z., Xia, P., Zhang, C., & Liu, Z. (2022). Spatiotemporal patterns of light pollution on the Tibetan plateau over three decades at multiple scales: Implications for conservation of natural habitats. *Remote Sensing*, 14, 1–17. https://doi.org/10.3390/ rs14225755
- Wongsa, S., Sueathung, S., & Tebakari, T. (2020). Climate change and adaptive water management in Bangpakong river, Thailand. 22nd Congress of the International Association for Hydro-Environment Engineering and Research-Asia Pacific Division, IAHR-APD 2020: "Creating Resilience to Water-Related Challenges" 1–6.
- Xiong, Y., Xu, W., Lu, N., Huang, S., Wu, C., Wang, L., Dai, F., & Kou, W. (2021). Assessment of spatial-temporal changes of ecological environment quality based on RSEI and GEE: A case study in Erhai Lake Basin, Yunnan province, China. *Ecological Indicators*, 125, 107518. https:// doi.org/10.1016/j.ecolind.2021.107518
- Xu, F., Li, H., & Li, Y. (2021). Ecological environment quality evaluation and evolution analysis of a rare earth mining area under different disturbance conditions. *Environmental Geochemistry and Health*, 43, 2243– 2256. https://doi.org/10.1007/s10653-020-00761-6
- Xu, H. (2006). Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. *International Journal of Remote Sensing*, 27, 3025–3033. https://doi.org/10. 1080/01431160600589179
- Xu, H. (2008). A new index for delineating built-up land features in satellite imagery. International Journal of Remote Sensing, 29, 4269–4276. https://doi.org/10.1080/01431160802039957
- Xu, H., Duan, W., Deng, W., & Lin, M. (2022). RSEI or MRSEI? Comment on Jia et al. evaluation of eco-environmental quality in Qaidam Basin based on the ecological index (MRSEI) and GEE. *Remote Sensing*, 14, 5307. https://doi.org/10.3390/rs14215307
- Xu, H., Wang, M., Shi, T., Guan, H., Fang, C., & Lin, Z. (2018). Prediction of ecological effects of potential population and impervious surface increases using a remote sensing based ecological index (RSEI). *Ecological Indicators*, 93, 730–740. https://doi.org/10.1016/j.ecolind.2018. 05.055
- Xu, H., Wang, Y., Guan, H., Shi, T., & Hu, X. (2019). Detecting ecological changes with a remote sensing based ecological index (RSEI) produced time series and change vector analysis. *Remote Sensing*, 11, 1–24. https://doi.org/10.3390/rs11202345
- Xu, J., Zhao, Y., Sun, C., Liang, H., Yang, J., Zhong, K., Li, Y., & Liu, X. (2021). Exploring the variation trend of urban expansion, land surface temperature, and ecological quality and their interrelationships in Guangzhou, China, from 1987 to 2019. *Remote Sensing*, 13, 1–20. https://doi.org/10.3390/rs13051019
- Yan, Y., Zhuang, Q., Zan, C., Ren, J., Yang, L., Wen, Y., Zeng, S., Zhang, Q., & Kong, L. (2021). Using the Google earth engine to rapidly monitor impacts of geohazards on ecological quality in highly susceptible areas. *Ecological Indicators*, 132, 108258. https://doi.org/10.1016/ j.ecolind.2021.108258
- Yaung, K. L., Chidthaisong, A., Limsakul, A., Varnakovida, P., & Can, N. T. (2021). Land use land cover changes and their effects on surface air temperature in Myanmar and Thailand. *Sustainability*, 13, 1–21. https://doi.org/10.3390/su131910942
- Yuan, B., Fu, L., Zou, Y., Zhang, S., Chen, X., Li, F., Deng, Z., & Xie, Y. (2021). Spatiotemporal change detection of ecological quality and the associated affecting factors in Dongting Lake Basin, based on RSEI. *Journal of Cleaner Production*, 302, 126995. https://doi.org/10.1016/j. jclepro.2021.126995
- Zhang, K., Feng, R., Zhang, Z., Deng, C., Zhang, H., & Liu, K. (2022). Exploring the driving factors of remote sensing ecological index changes from the perspective of geospatial differentiation: A case study of the

Weihe River basin, China. International Journal of Environmental Research and Public Health, 19, 1-27. https://doi.org/10.3390/ ijerph191710930

- Zhang, Y., She, J., Long, X., & Zhang, M. (2022). Spatio-temporal evolution and driving factors of eco-environmental quality based on RSEI in Chang-Zhu-tan metropolitan circle, Central China. *Ecological Indicators*, 144, 109436. https://doi.org/10.1016/j.ecolind. 2022.109436
- Zhao, K., Valle, D., Popescu, S., Zhang, X., & Mallick, B. (2013). Hyperspectral remote sensing of plant biochemistry using Bayesian model averaging with variable and band selection. *Remote Sensing* of Environment, 132, 102–119. https://doi.org/10.1016/j.rse. 2012.12.026
- Zhao, W., Yan, T., Ding, X., Peng, S., Chen, H., Fu, Y., & Zhou, Z. (2021). Response of ecological quality to the evolution of land use structure in Taiyuan during 2003 to 2018. Alexandria Engineering Journal, 60, 1777–1785. https://doi.org/10.1016/j.aej.2020.11.026
- Zheng, Z., Wu, Z., Chen, Y., Yang, Z., & Marinello, F. (2020). Exploration of eco-environment and urbanization changes in coastal zones: A case

study in China over the past 20 years. *Ecological Indicators*, 119, 106847. https://doi.org/10.1016/j.ecolind.2020.106847

Zhi, Y., Shan, L., Ke, L., & Yang, R. (2020). Analysis of land surface temperature driving factors and spatial heterogeneity research based on geographically weighted regression model. *Complexity*, 2020, 1–9. https:// doi.org/10.1155/2020/2862917

How to cite this article: Nguyen, C. T., Kaewthongrach, R., Channumsin, S., Chongcheawchamnan, M., Phan, T.-N., & Niammuad, D. (2023). A regional assessment of ecological environment quality in Thailand special economic zone: Spatial heterogeneous influences and future prediction. *Land Degradation & Development*, 34(18), 5770–5787. <u>https://doi.org/10.1002/ldr.4876</u>