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Preface and Acknowledgements 

It is with great pleasure to present the proceedings of the 8th International Confer-
ence on Sustainable Urban Development (ICSUD). As an annual event organized by 
the Sustainable Urban Development Study Program at Vietnamese-German Univer-
sity, ICSUD serves as a dynamic platform for fostering knowledge exchange and 
collaborative networking among academics, researchers, policymakers, and repre-
sentatives of non-governmental organizations in the field of urban development. 
The 2022 conference marked 10th anniversary of the Sustainable Urban Develop-
ment Study Program (SUD) that took place at the newly established campus of 
Vietnamese-German University in Binh Duong Province, Vietnam. 

The theme “Innovative and Inclusive Urban Growth Models” was chosen to 
resonate with the current scholar discussions and the National Urban Agenda on 
finding new growth models to sustain the growth after 30 years of rapid urban-
ization. Innovations should not be centered on technology alone; it should include 
new governing and business models to enable and sustain the growth among different 
interest groups, within and crossing disciplines such as design, planning, or mobility. 
Better growth models not only ensure environmental integrity but also promote social 
cohesion and economic prosperity. 

The conference gathered distinguished speakers, scholars, and participants from 
various backgrounds in urban studies-, urban planning-, and urban development-
related fields. Participants shared their new findings and experiences over three 
key cross-disciplinary themes including “governance”, “climate change resilience”, 
and “mobility”. Of the 22 papers submitted, 16 papers were selected to publish in 
this Springer Nature Conference Proceedings under 3 chapters including Gover-
nance Based Transforming Growth Models, Climate Change Resilience Based 
Transforming Growth Models, and Mobility Based Transforming Growth Models. 

We were privileged to have esteemed support from organizing teams. We specially 
thank for the diligent efforts of the Organizing Committee from Vietnamese-German 
University led by Dr. Vien Thuc Ha, Dr. Hieu Ngoc Nguyen, and Dr. Dao Thi Bich 
Van. We deeply express gratitude for the great work and support of Prof. Hans 
Joachim Linke and his team from the University of Darmstadt. We show gratitude

v



vi Preface and Acknowledgements

for the financial support from Fredrick Neuman Foundation and the personal contri-
bution of Prof. Andreas Stoffers. We acknowledged the contribution of the scientific 
board members who had contributed numerous works for the conference paper and 
the later proceedings. Their commitments were pivotal in creating a vibrant and 
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to all committee members for their untiring work and support. 
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research papers to this proceeding’s publication. Their contributions have made this 
proceeding a valuable resource for further research, innovation, and policymaking 
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shared during ICSUD contribute to the advancement of inclusive and resilient urban 
growth models that will shape our cities in the future. 
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Assessment of Cooling Effect by Urban 
Park Using a Multi-data Source 
Approach 

Can Trong Nguyen , Amnat Chidthaisong, and Rungnapa Kaewthongrach 

Abstract Urban park is a component of urban green infrastructures, essential in 
urban ecosystems because it delivers various benefits to urban dwellers, from tangible 
to intangible values. Urban park is widely accepted as a friendly adaptive solution 
in the context of warmer cities worldwide due to climate change and urbaniza-
tion impacts. This research quantified the cooling effect of small and medium-sized 
parks in Bangkok Metropolis and identified primary controlling factors. An inte-
grated approach was adopted to achieve the overarching objectives, including image 
interpretation from various data sources and Trends-Breakpoints Detection Anal-
ysis (TBDA). The research findings revealed that summer’s most active cooling 
distance is around 100–200 meters. When the weather is cooler in winter, the cooling 
distance expands outward to + 400 and + 1,000 meters depending on park struc-
tures and neighboring backgrounds. A park in a region with denser vegetation should 
have a more moderate cooling effect. Increases in tree areas inside a park and their 
shape complexity can stimulate the cooling effect, especially in the cooler season. 
In contrast, the park’s water surface only contributes to the cooling effect during the 
hotter period. The research outcomes are helpful for urban planners in heat mitigation 
strategies using urban green infrastructures. 

Keywords Urban park · Urban green space · Cooling effect · Cooling distance ·
Park structure
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1 Introduction 

Many studies revealed that Southeast Asia (SEA) cities such as Kuala Lumpur 
(Malaysia), Bogor (Indonesia), Baguio (Philippines), Yangon (Myanmar), Ho Chi 
Minh City and Ha Noi (Vietnam), and Bangkok (Thailand) have experienced the 
warmer trend in land surface temperature (LST) and urban heat islands (UHI), 
about 0.03 °C to 0.92 °C per year [1, 4, 17, 20, 22, 23, 30]. Higher urban temper-
ature is directly responsible for human thermal comfort and heat-related morbidity 
and mortality in the city [11, 18]. It also causes pressures on the economy and 
energy sector for cooling demands, especially during heat waves [16]. Moreover, 
urban temperature alterations always occur parallel with urbanization, which induces 
impervious surface extension and narrowing vegetation. These nexuses imply poten-
tial solutions for urban design strategies to reduce the harmful impacts of heat exac-
erbation based on the basic notion of maximizing urban green areas like public parks. 
In the context of urbanization and escalating climate change, the urban thermal envi-
ronments are forecasted to be more severe for their inhabitants. Thus, the role of 
urban green spaces and public parks in mitigating the urban microclimate severity is 
more prominent and appreciated by managers and urban dwellers. 

On the other hand, large parks frequently attract more attention because they are 
supposed to have diverse and more significant benefits than smaller green spaces. 
In a crowded city, most land budget is prioritized for residential areas, commercial 
purposes, and solid urban infrastructures rather than large patches of green spaces 
[15]. Planning extensive urban forests is challenging in most compact cities. There-
fore, we intended to examine the cooling effect of small and medium-sized parks, 
potentially appropriate for urban greening plans. Additionally, the cooling distance is 
a principal parameter in the cooling models such as InVEST-Urban Cooling Model 
[7]. The cooling distance is diverse and fluctuates from park to park depending on 
many factors. When the cooling distance is specified, the model performance will 
be significantly improved. The factors controlling the cooling effect will substantially 
affect a prototype park design to apply to other current and future parks. 

This research stands on exploiting diversely free-accessible data to investigate 
the cooling effect given by the public parks, in which Bangkok metropolis is an 
empirical study. The controlling elements moderating the cooling effect were then 
analyzed to identify impacts of the park’s structure itself and external environments 
on the cooling effect, which are helpful information for urban planning toward heat 
mitigation strategies in the city.
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2 Study Sites and Datasets 

2.1 Study Sites 

Five parks were selected along the urban-periurban gradient of Bangkok metropolis 
(Thailand), considering their popularity and usable area (Fig. 1). The most extensive 
park is Chatuchak Botanical Garden which comprises three adjacent parks of Wachira 
Benchtas, Queen Sirikit, and Chatuchak. Its usable area is about 110 hectares and 
it has become one of the essential urban green spaces in this compact city. It is 
followed by Suan Luang Rama IX (shortly Rama 9) with nearly 80 hectares. The 
following two parks are relatively similar regarding the usable area, Lumpini (57.6 
hectares) and Serithai (56 hectares). However, they have significant disparities in 
location and landscape structures. Lumpini is supposed to be a “green asset” in a 
cramped neighboring area, while Serithai has its role in rainwater regulation in the 
periurban of eastern Bangkok. Finally, Thonburirom (or Thonburi, 10.058 hectares) 
is located on the city’s west side, which plays a crucial role in aesthetics and its 
surrounding neighbors’ environment. 

Fig. 1 Location of Bangkok, the considered parks, and air quality stations within Bangkok 
metropolis
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2.2 Air Temperature 

We obtained air temperature data from the Thailand Pollution Control Department 
(PCD), which includes 14 stations within the Bangkok metropolitan region. These 
stations are set up at roadside and ambient locations to hourly measure air tempera-
tures. The temperature at each station was selected based on date and time criteria. 
In particular, we obtained the air temperature at 10:00 am for analysis because the 
initial test showed that LST and air temperature reached their highest correlation 
value at 10:00 am. 

2.3 Landsat 8 Imagery 

Landsat 8 (OLI/TIRS) surface reflectance is the primary data source to extract 
surface characteristics and simulate air temperature from these features. The land 
surface reflectance (LSR) data is atmospherically corrected using Landsat Surface 
Reflectance Code. The LSR, therefore, minimizes atmospheric influences, especially 
on temperature data, which is relatively susceptible to atmospheric and cloud condi-
tions. We acquired images under satisfied weather conditions of clear sky or limited 
clouds covering the study sites and ambient regions. Seven scenes were captured 
at seven milestones from 2014 to 2016 for training and validating the air tempera-
ture predictive model. Whereas the clear-sky images acquired on 19/02/2020, 22/03/ 
2020, and 17/11/2020 were adopted to simulate spatial air temperature for further 
analyzes in this study. 

2.4 Google Earth-Based Imagery 

The park’s landscapes should be classified by very-high-resolution imagery (VHR) 
since its scale is frequently small. Yet, we cannot access commercial satellites in this 
study. Fortunately, Google Earth provides free accessibility to its VHR images at 
different times. Although Google Earth imagery (GEI) cannot offer diverse spec-
tral information as a standard multispectral image, it can adjust the details to be 
observed. Thus, the GEI becomes a cost-effective VHR data source widely applied 
in many urban studies [12, 14]. We collected GEI at each park using the SASPlanet 
(v200606) tool. The pixel size of the collected GEI is approximately 30 centimeters 
per pixel edge.
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2.5 Sentinel-2 Imagery 

GEI is relatively approriate for mapping in detail land cover in a small-scale 
area. However, it shows limitations in a larger region when the detail of GEI becomes 
its drawbacks in terms of processing performance. More explicitly, there are potential 
noises from building shadows, colors of different roof materials, tree canopy struc-
tures, and even water surface waves. Therefore, we adopted moderate-high spatial 
resolution satellite imagery of Sentinel-2 (10 meters) to classify landscape informa-
tion around the park from its border to 2 km. Sentinel-2 L2A images were collected 
with an acquisition strategy of the smallest difference in captured date of Landsat-8 
images above. Two scenes were downloaded directly from the Sentinel Hub on 21/ 
02/2020 (10:37) and 29/08/2020 (10:35). These images have a low cloud coverage 
rate of 0.47% and 5.81% for the image in February and August, respectively. 

3 Methodology 

3.1 Land Cover of the Park and Surrounding Areas 

Landscapes of the parks were classified using Google Earth imagery. It comprises 
five land cover categories of wood tree, grassland, soil/pavement, buildings, and lake/ 
pond. Firstly, the acquired images were reprojected before they were analyzed by 
object-oriented classification. The images were then overcome through a segmenta-
tion procedure, which groups nearby similar pixels together based on their similarities 
in spectral information, proximity, pattern, and so on. Segment Mean Shift (SMS) 
technique was adopted to analyze the GEI. Subsequently, the segmented images were 
classified by the ISODATA (Iterative Self-Organizing Data Analysis) unsupervised 
classifier. To cluster pixels into N user-defined groups, the algorithm randomly sets 
cluster centers and assigns pixels to clusters using minimum distance. The clusters 
will be merged or split based on the minimum distance among the cluster’s centers. 
The progress is repeated until all pixels are precisely separated and the number 
of clusters reaches the user-defined number. In this study, the initial clusters of N 
= 30 were set for classification. The subclusters were combined altogether if they 
presented an identical land cover type when collated with image visualization. 

The neighboring regions of each park were extracted by multispectral imagery 
of Sentinel-2, which grouped into major land cover categories such as impervious 
surfaces, vegetation, water bodies, and bare land. First, the multispectral bands (i.e., 
visible wavelength, Red-Edge, NIR, and SWIR) were consistently resampled pixel 
size of 10 meters. After that, we applied integration of principal component analysis 
(PCA) and ISODATA unsupervised classifier to retrieve the park’s neighboring land 
cover. The initial cluster number was N = 15 because Sentinel-2 imagery is less 
detailed than GEI. Finally, the classified images were combined to generate a map 
based on general land cover types.
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3.2 Air Temperature Estimation Using Machine Learning 

Surface characteristics extraction. The surface characteristics were described by 
spectral indices, representing three primary land cover patterns of vegetation, imper-
vious surfaces, and water bodies. Particularly, vegetation was depicted by the Normal-
ized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI). 
NDVI is a well-known index to identify live green foliage relating to photosyntheti-
cally active radiation (PAR) and Near Infrared (NIR) light [9, 24]. However, it shows 
limitations when vegetation becomes denser. EVI was proposed to overcome the 
NDVI limitations by adjusting the NDVI formula by blue light and constants [10]. 
Hence, we also obtained EVI to separate different vegetation canopies, which are 
expected to influence the air temperature. The next crucial land cover type is urban 
features, which mainly contribute to urban warming due to the thermal characteris-
tics of urban materials. Therefore, we calculated two urban indices (i.e., Urban Index 
(UI) and Normalized Difference Built-up Index (NDBI)) to test which index better 
performs for air temperature estimation. Finally, the water surfaces were defined 
by the Modified Normalized Difference Water Index (MNDWI) – an optimal water 
index to locate water features in urban areas [28]. 

Land surface temperature retrieval. Land surface temperature (LST) was 
retrieved using a widely applied algorithm, which converts DNs values to LST by 
calibrating brightness temperature (TB) using NVDI-based land surface emissivity 
(LSE) (Eq. 3) [3, 25, 27]. Firstly, vegetation fraction (FVC) was calculated by cali-
brating specific NDVI pixels by NDVI values of fully dense vegetation (NDVIV) and 
completely bare soil surface (NDVIS) (Eq.  1) (Carlson & Ripley, 1997). Then, LSE 
was estimated by an empirical equation using FVC for Landsat OLI/TIRs (Eq. 2) 
[21, 26]. 

FVC = ((NDVI − NDVIS) / (NDVIV− NDVIS))2 (1) 

ε = 0.00149 × FVC + 0.985481 (2) 

TS = (TB/(1 + (λTB/ρ) ln ε)) − 273.15 (3) 

where FVC is vegetation fraction; NDVIS and NDVIV are vegetation index of fully 
dense vegetation and bare soil, respectively; ε is land surface emissivity for Landsat 
OLI; TS the is the land surface temperature (oC); TB is brightness temperature in 
Kelvin; λ is the wavelength of emitted radiance (i.e., Landsat OLI is band 10, λB10 

= 10.89 μm); ρ = hc/σ , with ρ = 1.438 × 10–2 Mk. 

Optimal distance determination. Air temperature at a particular location is regu-
lated by its surrounding landscape rather than its land cover. Therefore, we should 
determine which distance that land cover mainly drives air temperature variations. 
Firstly, aggregated images of surface indices were generated with the number of 
pixels on each edge that belongs to an odd number subset, F = {3,5,7,…, 65,67}.
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These pixels correspond to distances from 90 to 2,100 meters from the stations. 
Next, the index values were extracted and compared to air temperature at 10:00 a.m. 
using the Pearson correlation coefficient. The distance of each index was noted when 
the correlation coefficient achieved the first highest value. The influential distance 
was subsequently determined as a general distance throughout all indicators. The 
effective distance is 750 meters based on our initial test. 

Air temperature predictive model. LST is a critical variable in air temperature 
prediction models because it has the most significant relationship with other surface 
indicators [8, 19]. The best model was detected through a model performance test 
using cross-validation. Specifically, the simple model of only LST, its combination 
with each surface indicator, and two other Random Forest (RF) synthetic models 
were evaluated with iteration N = 1000. The most optimal model is determined 
when a model achieves a higher accuracy with fewer predictors. Finally, the optimally 
predictive model was applied to its contributors of spatial surface elements to simulate 
air temperature in entire study areas. 

3.3 Analyzing Climate Regulation Effect 

The influential distance of the park was analyzed by trend and breakpoint detec-
tion analysis using the greenbrown R package [5]. Theoretically, the greenbrown is 
performed on time series data to explore how the land phenology changes. This study 
assumed that air temperature variation every 100 meters until 2,100 meters is a node 
in time series data. As a result, the influential distance was detected at a breakpoint 
where air temperature significantly drops from the park site. 

In addition to the land use, land cover (LULC) area, the landscape metrics, 
including Percentage of Landscape (PLAND), Aggregation Index (AI), and Land-
scape shape index (LSI), were computed for park structures and surrounding areas 
for each 100-m buffer zone [13]. Subsequently, we analyzed the correlation between 
air temperature difference (i.e., the gaps between near park zones and highly dense 
urban areas) and each landscape metric using the Pearson correlation coefficient. 

4 Results and Discussions 

4.1 Park’s Land Cover Structure 

Landscapes of the considered parks interpreted from GEI are shown in Fig. 2. Unlike 
the classic parks only occupied by vegetation and woodlands, these parks incorporate 
diverse landscapes of wood trees, lawns, and water surfaces (Fig. 2). These designs 
are based on modern design perspectives to provide diverse sceneries and take their 
environmental advantages. In addition to the difference in usable area, their structures
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Fig. 2 Landscape proportion in the considered parks delineated from GEI 

are relatively diverse. The pivotal object throughout the parks is vegetation, i.e., 
it is contributed by any green patch. The woodland proportion always maintains 
from 38.8% (Serithai) to 60.7% (Thonburi) (Fig. 2). Lumpini and Chatuchak also 
hold a relatively large area of the woodland, about 51.9% and 49.2%, respectively. 
Chatuchak Park uses 30.3% of the space for expansive lawns, the most extended 
lawn area among the parks. Regarding the contribution of water surfaces in the 
parks, Serithai is highlighted with a central lake, where the water surface area rate is 
up to 34.7%. 

4.2 Spatial Air Temperature 

The optimal distance for air temperature simulation was 750 meters. The influen-
tial distance was utilized as a buffer distance to extract surface indicators for model 
testing. Model accuracy for different RF-model combinations is shown in Table 1. 
Notably, the model with solely LST achieves relatively high accuracy, 0.91 ± 0.028. 
Adding one or more auxiliary data of surface indicators improves the accuracy of air 
temperature simulation. Among vegetation indices, the model contributed by EVI is 
more efficient than the NDVI model, with an accuracy is 0.94 versus 0.93, respec-
tively. The models of the urban index are not much different in performance assessed 
by mean accuracy; nevertheless, the UI model reaches higher maximum accuracy 
implying potential efficiency compared to NDBI. The model with MNDWI contri-
bution also obtained 0.94 ± 0.02. According to these analyzes, we proposed and 
tested an optimal model (M7), constituted by the favorable elements (i.e., LST, EVI, 
UI, and MNDWI). Its performance reached a high level of 0.96 ± 0.014 against 
the above models, with the highest value even achieved at 0.98. The model perfor-
mance of all elements (M8) is not much distinctive from the M7 model, while the 
M7 model can simulate air temperature with fewer variables. As a result, the M7
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Table 1 The accuracy obtained by cross-validation from different RF-model combinations 

Model Predictors Average Accuracy Std. 

M1 LST 0.906 0.0285 

M2 LST, NDBI 0.941 0.0185 

M3 LST, EVI 0.932 0.0225 

M4 LST, UI 0.942 0.0187 

M5 LST, NDVI 0.924 0.0273 

M6 LST, MNDWI 0.936 0.0208 

M7 LST, EVI, UI, MNDWI 0.954 0.0150 

M8 LST, NDBI, UI, NDVI, EVI, MNDWI 0.958 0.0136 

model was considered as an ideal model for spatial air temperature estimation in 
Bangkok metropolis, R2 = 0.91 and RMSE = 0.89. The spatial simulation for air 
temperature entirely in Bangkok on free cloud dates of 19/02/2020, 22/03/2020, and 
17/11/2020 was obtained by applying the ideal M7 model. 

4.3 Spatiotemporal Distinctness in Cooling Effect Distance 

The average Ta within the park boundary extracted from the estimated air temperature 
is shown in Table 2. Overall, the park’s air temperature increases from February to 
March; in November, it drops to values less than that in February. The highest temper-
atures throughout the months are at Chatuchak Park, while the lowest temperatures 
are held by Thonburirom Park (February and November) and Serithai (November). 
For example, we consider temperature variations between February and March, 
which shows that the most easily variated parks are Lumpini (∆Ta = 2.29 °C) and 
Thonburirom (∆Ta = 2.14 °C). On the contrary, Serithai and Rama 9 tend to be more 
stable in temperatures over time, especially Serithai ∆Ta = 0.55 °C. 

We investigated the cooling effect of each park using breakpoint analysis (Fig. 3). 
Firstly, the Ta value changes along the horizonal buffer zones from 0 to 2000 meters 
were assumed and analyzed as annual time series data. Then, the trend and break-
points were tested to determine the statistically significant trends and breakpoints.

Table 2 Each park’s average air temperature (°C) in February, March, and November 2020 

Park February March November 

Chatuchak 27.678 ± 0.971 29.561 ± 0.879 27.417 ± 1.064 
Lumpini 26.893 ± 0.166 29.180 ± 0.367 26.617 ± 0.496 
Rama 9 27.087 ± 0.139 28.352 ± 0.522 26.577 ± 0.257 
Serithai 27.659 ± 0.252 28.205 ± 0.487 27.989 ± 0.248 
Thonburi 26.372 ± 0.035 28.513 ± 0.352 25.283 ± 0.001 
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The principles accepted for this analysis is the temperature at the park, which is 
controlled by cooling features such as wood trees, lawns, and water surfaces, being 
coolest in comparison to surrounding impervious surfaces; plus, the temperature 
gradually increases under the influences of dense urban areas until the temperature 
drops again when it reaches rural areas with extensive cooler surfaces and landscapes. 

Chatuchak can control the air temperature around the park by about 600 ± 
100 meters in November. The influential distance is narrowed from February to 
March, approximately 200 ± 100 meters (i.e., it can cool up to 400 meters) and 
200 ± 100 meters. The Lumpini Park can also cool down its neighboring areas up 
to 600 ± 100 meters in winter. Yet, this distance is solely 200 meters in February.

Fig. 3 Air temperature changes along the horizontal transect and corresponding changepoints (red 
nodes) 
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In the mid-summer, Lumpini Park does not show a cooling effect anymore to its 
surrounding areas. 

Surprisingly, the biggest park of Rama 9 Park has no significant cooling effect 
through the analysis for both February and March. The cooling effect, however, 
significantly improves in the winter season. The areas around the park, about 900 
± 100 meters, are primarily affected, and the active distance can expand up to 
1,200 meters. In Serithai Park, only the areas adjacent to the park (about 100 meters) 
can receive the cooling effect. The affected regions enlarged by 200 meters in 
November. 

In contrast to other parks, i.e., the cooling effect weakens in the mid-summer, the 
Serithai Park shows a remarkable regulative capacity of 500 ± 100 meters. On the 
other hand, the smallest park of Thonburirom Park can reduce the air temperature by 
around 200 meters and 100 meters in February and March. However, these distances 
are insignificant. During the winter season, the active cooling distance achieves 1,600 
± 100 meters, the most extended distance among the considered parks in Bangkok. 

4.4 Pivotal Factors Regulate Park Cooling Effect 

The park’s cooling effect fluctuates throughout the year depending on seasons, while 
its inside structures and surrounding environments remain relatively stable as a 
kind of evergreen vegetation. Our analyzes for air temperature variations within 
100 meters and 500 meters, 100 meters represent a location cooled down by the 
park, and 500 meters is a place of denser urban areas (Fig. 4), revealing the parks’ 
temperature and their cooling magnitude are closely associated with location and park 
structures. For instance, the temperature gap between the two mentioned locations in 
November (i.e., when all parks’ cooling capacities tend to be consistent and clarified) 
decreases gradually in Chatuchak (0.367 °C), Lumpini (0.244 °C), Rama 9 (0.13 °C), 
Thonburi (0.042 °C), and Serithai (0.016 °C). The more significant the temperature 
gap, the more influential the park with a high cooling effect is. It means that Chatuchak 
and Lumpini have a higher cooling effect than other parks.

Figure 4 shows the background of the parks where they are located. Regarding 
urban density from 500 meters outwards, Chatuchak and Lumpini stand within the 
metropolitan areas with the urban proportion exceeding 50% from 300 meters. Simi-
larly, Serithai and Thonburi are determined to be in periurban areas as the urban 
densities fluctuate around a threshold of 50%. Rama 9 is a suburban park since its 
surrounding urban density is approximately 35% within the first 1,500 meters from 
the park boundary. The correlation analysis of the park’s neighboring areas influ-
ences the park’s temperatures and cooling effect. The results concede that the park’s 
cooling effect is assisted by outside vegetation. Increasing the shape complexity of 
vegetation patches and green areas is the most influential factor. In contrast, the 
cooling effect is weakened by increasing impervious surfaces.
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Fig. 4 Proportion of LULC from the park boundary outwards to neighboring areas

Regarding the park itself structures, it tends to be more influential in the cooling 
effect. The tree area is the most statistically significant element controlling cooling 
intensity (R = 0.97, P < 0.01). Moreover, the tree arrangement, i.e., green patches, 
are planted closely together into plates of complex shapes, which also governs to 
cool down park’s neighboring areas. Besides, the water surface area inside the park 
in the form of a lake and wetland helps to improve the cooling effect outside the 
park. 

The correlation analysis between the park characteristics, background patterns, 
and cooling intensity is shown in Fig. 5. The results indicate that both the outside and 
inside environments drive the cooling effect. In particular, the relationships are more 
significant in November against February and March. Outside vegetation substan-
tially influences park cooling intensity, with an increase in vegetation proportion 
(PLAND) and its assembly into big patches (AI, LPI) being the most important deter-
minants. In contrast, the compact impervious surfaces are represented by the spatial 
metrics of area, proportion, and aggregation, significantly weakening those effects 
encouraged by green spaces. Regarding the park’s structures, the tree area is the most 
statistically significant factor influencing cooling intensity, notably in November 
(R = 0.97, P ≤ 0.01). However, the influence is moderate in February and even 
non-existent in March. The tree arrangement, i.e., green patches, are planted tightly 
together to form plates of close and complicated shapes (i.e., AI and LSI), which 
also cools the park’s surrounding regions. Furthermore, the park’s water surface area, 
such as the lake and marsh, aids in improving the cooling effect outside the park, 
particularly during the hot season.
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Fig. 5 Heatmap shows correlation coefficients between cooling effect and landscape metrics. Note: 
Symbols (*) and (-) indicate significance levels at ≤ 5% and ~ 10%. Grass: grassland; IS: impervious 
surfaces such as built-up, pavements, and roads; Lake: water surfaces; Tree: vegetation and woodland 
inside and outside the parks 

4.5 Implications for Urban Environment and Planning 

The considered parks in this study are ranked from small to medium size (10– 
110 hectares). Yet, the active cooling distance is smaller than about one-third of a 
150-hectare park (200–300 meters) [6] and six times that of a 680-hectare large park 
(~1400 meters) [29]. Therefore, in urban green space design, small and medium-sized 
parks placed at the most beneficial distance from each other should be emphasized 
to maximize the limited urban land budget while ensuring open space accessibility 
for all inhabitants. Furthermore, a reasonable distribution of parks with other green 
infrastructures outside the parks disperses the concentrated pressures, improving the 
cooling effect. 

Heat reduction is supported by combining blue and green spaces. Timber trees 
should be the primary focus. However, the water surface is also a supportive element. 
The integrated blue spaces (e.g., a tree-shaded lake and artificial wetland with appro-
priate aquatic plants) should be applied instead of the monotonic and extensive lake 
in urban planning. A lawn serves as a venue for outdoor leisure, such as picnics, 
assemblies, group activities, and a place to set up exercise equipments. At the same 
time, a cluster of wood trees significantly decreases air temperature. To minimize 
monotonic landscapes, the proportions of wood trees, lawns, and lakes within a park 
should be adjusted appropriately. In addition, the arrangement of trees should be
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considered, with individual trees being replaced with clusters of trees with intricate 
forms and edges to increase the cooling effect. 

Though landscape integration is essential to enrich urban biodiversity and exploit 
different and beneficial angles, the water surface’s cooling effect is prominent in hot 
weather [30]. The effect is reduced at nighttime due to heat release, especially for 
polluted water in the city. Therefore, in park design, the ratios of vegetated surfaces to 
water surfaces should be insightfully considered to diversify landscapes and optimize 
the cooling impact over time. 

5 Conclusion 

The cooling effect of public parks and the elements that influenced it were investi-
gated. Using multiple data sources, we found the integrated landscapes in all parks 
with a high share of green and blue areas at various combinative ratios. Aside 
from that, there are differences in cooling distance, which vary according to the 
season. During the summer, the active cooling distance is usually between 100 and 
200 meters. However, the cooling distance extends outward 400 meters and up to 
1,000 meters, depending on park structures and the surrounding background. The tree 
area inside the park and the arrangement of green space patches are the most critical 
factors controlling climate regulation. Although the other neighboring elements are 
insignificant in statistics, they are worthily considered in urban planning strategies 
to mitigate urban heat islands, such as low urban density, high vegetation area, and 
vegetation shape complexity. Furthermore, the water surface provides an unsteady 
cooling effect both within and outside the park. As a result, using water surfaces 
as part of a heat mitigation plan should be carefully examined to achieve a more 
appropriate and sustainable strategy for urban heat reduction. 
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