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A B S T R A C T

Mapping fruit tree species is an essential task in agricultural planning and management. However, 
the classification of tropical fruit tree species faces many technical challenges because of their 
identical leaf characteristics, especially in developing countries with limited accessibility to data 
and advanced technologies. This study attempts to evaluate the effectiveness of currently avail-
able satellite images (Sentinel-2 and Planet) and Gray-level co-occurrence matrix (GLCM) textural 
features in discriminating tropical fruit trees using a conventional neural network (CNN) 
compared to other machine learning algorithms. Spectral bands and textural features from 
Sentinel-2 and Planet images were extracted to input into the CNN model, as well as other five 
commonly used machine learning models, including K-Nearest Neighbor (KNN), Gradient 
Boosting Machine (GBM), Naive Bayes (NB), Random Forest (RF), and Support Vector Machine 
(SVM). The classification results were evaluated based on performance metrics of accuracy, F1- 
score, and spatial agreement of classified maps. The contribution of each variable in the classi-
fication was identified using permutation feature importance. The research findings revealed that 
the CNN model outperformed the other machine learning models in detecting five major fruit 
trees (i.e., coconut, coconut intercropping, durian, pomelo, and rambutan). The most important 
contributions to mapping performance were constituted by spectral bands from Sentinel-2 (e.g., 
shortwave infrared-SWIR, Blue, and Vegetation Red-Edge bands), while Planet image provides 
vital textural information such as Entropy (ENT), Angular Second Moment (ASM), sum average 
(SA), and homogeneity (HOM). The research provides valuable insights into classifying tropical 
fruit trees using entirely free data sources, avoiding the need for costly and complex alternatives. 
It also presents significant potential for applications in other tropical regions, contributing to 
sustainable agricultural management.
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1. Introduction

Fruits are an essential component of a healthy diet, as they are rich in fiber, vitamins, minerals, electrolytes, and antioxidants, 
thereby assisting in control of chronic diseases and body weight management (Pem and Jeewon, 2015; Slavin and Lloyd Beate, 2012). 
Fruit trees (or orchards) are a typical ecosystem that can generate both ecological and economic benefits for indigenous communities, 
supporting environmental protection against desertification and alleviating poverty (Xia et al., 2020). It is obvious that fruit trees 
provide huge provisioning services (food, fiber, and nutrients) and increase farmers’ income. For example, in Vietnam, the income 
from fruit cultivation is 2–3 times higher than that from rice cultivation (Thuong and Ha, 2013). As a type of plantations, they also 
participate in generating various supporting and regulating services, such as soil retention, water conservation, carbon sequestration, 
climate regulation, habitat provision, and aesthetic and cultural values (Wang et al., 2023). In some areas, farmers often spontaneously 
convert from agricultural land to fruit trees and from one type of fruit tree to another due to market demand and high profits (Hanh 
et al., 2017). This trend can disrupt the planning of specialty fruit-growing areas and complicate effective management of pests and 
diseases. Therefore, there is a need for robust and accurate mapping of fruit-growing areas to support growth monitoring, prevention of 
diseases and insect pests, yield and productivity estimation (Zhou et al., 2022a).

Fruit species can be primarily grouped into three categories based on their geographic and distributed climate, including tropical 
fruits (jackfruit, durian, rambutan), subtropical fruits (lychee, avocado, kiwi), and temperate fruits (apple, pear, peach, plum) 
(Ozdarici Ok and Ok, 2023a). It differs from subtropical and temperate fruit species. Tropical fruit trees are complicated to identify 
using remote sensing data because they are often grown in highly dense and multilayer canopies with relatively similar spectral 
signatures (Pereira Martins-Neto et al., 2023; Sothe et al., 2019). Moreover, tropical species have less pronounced seasonal changes 
compared to temperature species. Their leaf phonologies are identical, limiting the effectiveness of seasonal remote sensing data for 
identifying and distinguishing species.

Local authorities usually adopt traditional manual surveys to estimate and draw regional fruit-growing maps. However, this 
method has many problems, such as the time, cost, and labor required for long-term surveys or subjective differences in surveyors’ 
criteria that can lead to inconsistent results (Zhou et al., 2022a). Developing state-of-the-art remote sensing data sources and analysis 
techniques effectively encourages many applications in agriculture and fruit tree species mapping (Ozdarici Ok and Ok, 2023a). There 
are three major approaches to discriminating fruit/tree species, including (1) hyperspectral data sources (Deng et al., 2020; Ferreira 
et al., 2016; Upadhyay et al., 2019), multitemporal analysis (Peña et al., 2017; Zhou et al., 2022a), and very high-resolution images 
from Unmanned Aerial Vehicle (UAV) (Dong et al., 2020; Tian et al., 2022). The first approach exploits the differences in spectral 
signatures between species within a narrow spectral range to distinguish tree species. The multitemporal time series are applied on 
Landsat, Sentinel-2, and even active SAR (Synthetic Aperture Radar) to capture seasonal variations between species because of leaf 
phenology across seasons. As mentioned, it is deemed more suitable for temperate fruit species than tropical species without significant 
plant phenology changes. Moreover, obtaining a continuous optical time series is substantially challenging for tropical monsoon re-
gions. The third approach accounts for a large proportion of methods used for fruit tree detection regardless of climate region (Ozdarici 
Ok and Ok, 2023a). Very high-resolution images from UAVs can even carry hyperspectral sensors, assisted by object recognition and 
object-based image analysis (OBIA), which can achieve accurate species detection. Yet, it is frequently utilized to monitor smallholder 
farms because it is challenging to collect and process data for an extensive area using UAVs. Although these methods have high 
performance, approaching hyperspectral and very high-resolution images is strenuous, especially in developing countries over a large 
area.

In addition to spectral and temporal changes, textural features also considerably contribute to the accuracy of land use, land cover 
classification using remote sensing data. They have been effectively applied in land use, land cover classification (Iqbal et al., 2021; 
Kabir et al., 2010; Kupidura, 2019). For example, vegetation types and rubber plantations were successfully identified by combining 
Sentinel-2 spectral bands and textural indices (Mohammadpour et al., 2022; Zhang et al., 2020). They not only represent the surface 
brightness/gray tones but also reflect the spatial distribution and structural information of surface objects (Zhang et al., 2020). Spectral 
signatures are the result of interactions between solar radiation and surface materials or chlorophyll in leaves and are therefore highly 
dependent on weather, environment, and plant conditions (Nguyen et al., 2023). In contrast, textural features are relatively stable and 
can characterize canopy features. Distinguishing tropical fruit species using textural features has promising potential.

Convolutional Neural Networks (CNNs) have proven to be highly effective in image processing, particularly in crop classification 
and object recognition. Unlike traditional machine learning models, CNNs automatically extract features from raw data without the 
need for manual techniques, which saves time and reduces reliance on user expertise (Yang and Xu, 2021; Liu et al., 2017). By utilizing 
convolutional and pooling layers, CNNs maintain the spatial relationships between pixels, enabling them to detect features like edges, 
textures, and shapes (Yang and Xu, 2021; Liu et al., 2017). Additionally, due to their multilayer structure, CNNs learn hierarchical 
features that range from basic elements such as edges and corners to more complex structures like shapes and objects (Yang and Xu, 
2021). This capability allows CNNs to recognize intricate patterns more effectively than traditional machine learning models (Liu 
et al., 2017). Numerous studies have highlighted the superior performance of CNNs. For instance, a 13-layer CNN achieved an accuracy 
of 94.94 %, which is at least 5 % higher than other methods (Liu et al., 2017). Another study focused on classifying fruits by family 
using CNNs, achieving an accuracy of 99.82 %, thereby outperforming both ResNet-20 and SVM (Kumar et al., 2022). Additionally, 
CNNs support transfer learning, which enhances their utility on smaller datasets (Yang and Xu, 2021). The application of CNNs for 
classifying fruit trees, particularly in tropical regions, holds significant promise for agricultural research and modernizing farming 
practices (Rahaman et al., 2018; Mureşan and Oltean, 2021).

In the current context of increasing diverse remote sensing data sources with relatively good spatial and spectral resolution data 
being increasingly opened for public access, such as Seninel-2 (13 spectral bands, 10 m) and Planet NICFI (approximate 5 m, Norway’s 
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International Climate and Forest Initiative). This study ambitiously establishes a methodological framework to identify tropical fruit 
species based on a combination of available medium-high resolution images and textural features that can be subsequently established 
as a basis for large-scale mapping. More specifically, it evaluates the classification performance of a deep learning model compared to 
other commonly used machine learning models from disparate perspectives. The research findings of this study have important 
methodological implications for replication and further development for similar areas in tropical climates, where classification of 
tropical fruit species is often a demanding task.

2. Materials and methods

2.1. Study area

Ben Tre is one of the top three leading provinces in the Vietnamese Mekong Delta in terms of orchard area. This is also a principal 
economic region planned to develop 12 main types of tropical fruits. Some typical fruits in Ben Tre that are famous for their quantity 
and quality include rambutan (Nephelium lappaceum), durian (Durio zibethinus L.), mangosteen (Garcinia mangostana), star apple 
(Chrysophyllum caimito), pomelo (Citrus Maxima), longan (Dimocarpus longan), and langsat (Lansium domesticum). This is also home to 
the most immense coconut farms in Vietnam, with an area of approximately 78,000 ha (2023). In 2020, the total orchard area is 
approximately 26,641 ha, which provides about 300 thousand tons of fruits per year, mainly distributed in Cho Lach and Chau Thanh 
districts (about 30 % of each district).

Regarding geographic location, Chau Thanh is located North of Ben Tre province, which has an area of 22,500 ha (Fig. 1). It is likely 
an island separated by intricate rivers and canals. Chau Thanh possesses favorable natural conditions for developing agriculture and 
fruit cultivation. More specifically, the terrain is relatively flat (~3 m above sea level) (Thu et al., 2013). It is dominated by the tropical 
monsoon climate with stable and high average temperatures (26–27 ◦C) and high precipitation (Ba and Nhung, 2013). Furthermore, 
the district is located between the tributaries of the Mekong River, My Tho and Ham Luong rivers, with fertile alluvial soil and 
abundant freshwater. Although saltwater intrusion in the dry season is observed yearly, it is frequently mild during a short period. 
Local communities also have a long terms experience cultivating and breeding fruit trees for about 40 years. Therefore, these favorable 
conditions allow Chau Thanh to become one of the vital fruit production districts of the province. The main fruit tree area in Chau 
Thanh District primarily consists of coconut, durian, pomelo, and rambutan, which together account for 70.7 % of the district’s total 
land area. This cultivation plays a vital role in the livelihoods of local residents. In response to the current issue of scattered farming 
practices, the district’s agricultural sector is being restructured into concentrated growing areas that promote sustainable develop-
ment. Therefore, applying technology to manage these growing spaces is crucial for district administrators.

Fig. 1. Chau Thanh district in Southern Vietnam and locations of ground truth points collected during field survey campaigns. The background is 
Sentinel-2 image (True color composite).
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2.2. Satellite images and preprocessing procedures

This study adopts and combines two optical satellite images as the primary data sources for fruit tree classification. The first data 
source is Sentinel-2 Level 2A, a medium-to-high-resolution optical satellite imagery product that is widely regarded as one of the best 
freely available datasets for recent land monitoring (Phiri et al., 2020). Its multispectral imager (MSI) sensor can provide a wide range 
of spectral bands from visible and near-infrared to shortwave infrared spectrum (Table 1). Additionally, the spatial resolution is 
relatively high, up to 10 m at its highest. Therefore, it is essentially useful for detecting and distinguishing many land use and land 
cover features, even those that are small in size and have similar spectral reflectance—challenges that are difficult to overcome with 
previous satellite imagery (Phiri et al., 2020; Segarra et al., 2020). Moreover, the Level 2A data provides bottom-of-the-atmosphere 
(BOA) reflectance, enhancing information while limiting atmospheric effects in the tropics (Vrdoljak and Kilić Pamuković, 2022). 
This makes the classification in this tropical region more efficient. The fruit trees in the research area are evergreen and do not exhibit 
significant seasonal variations in leaf phenology as in temperate regions. Therefore, instead of collecting multi-temporal images, which 
are likely to be heavily affected by clouds due to the tropical coastal region, the study acquired quality scenes with the lowest cloud 
coverage. We acquired one cloud-free scene of Sentinel-2 (L2A) from Copernicus Data Space Ecosystem (https://dataspace.copernicus. 
eu/). This image was captured on February 25, 2020 (10:17 a.m. local time) with a cloud cover rate of 0.993 % for the classification. 
We directly utilized four visible and near-infrared (NIR) bands at 10-m resolution. Although the other six medium-resolution bands (i. 
e., four vegetation red edge bands and two shortwave infrared bands) have coarser spatial resolution at 20 m, they can provide 
valuable spectral information to capture and distinguish diverse leaf characteristics among fruit trees based on a wider spectral range 
given by these six bands. To match the high-resolution bands, these bands were resampled to a pixel size of 10 m using the nearest 
resampling method. The preprocessing procedures, including resampling, layer stacking, and cropping of the study area bounded 
image, were performed using terra (Spatial Data Analysis) package in R-4.4.2.

This study also leverages the Planet (Planet-NICFI) surface reflectance basemap distributed through Google Earth Engine (GEE) 
platform. This freely available high-resolution data (~5 m) is expected to enhance fruit tree discrimination by better spatial resolution 
that might be missed on Sentinel-2 images. The Planet-NICFI basemap is a mosaic data collection combining PlanetScope and RapidEye 
images for the initial purpose of forest tracks (Pandey et al., 2023; Zhang et al., 2023). Image scenes are processed by a procedure of 
scene selection, atmospheric correction, cloud mask, and normalization to produce monthly cloud-free images (Dalagnol et al., 2023). 
We collected cloud-free images from the Tropical Asia data collection in June 2020 to match the Sentinel-2 data above. The pre-
processing steps, including applying date and location filters, generating a median composite image, and clipping to the study area, 
were conducted using algorithms in GEE. The preprocessed output with four spectral bands (Table 1) at ~5-m resolution was then 
exported from GEE for further processing steps outside of the platform.

2.3. Reference data

Ground truth point collection is a vital dataset in satellite image classification as it plays a key role in both training and validating 
the classifier. We collected the ground truth points in the study area through field data collection campaigns in April 2020. Field survey 
groups were allocated different routes, mainly along major roads to facilitate movement and cover the entire study area. Each group 
was equipped with a handheld GPS or a mobile GPS application of Mapinr to mark the location of the corresponding land cover types 
and fruit tree parcels. The parcel is selected that should be large enough to ensure its representativeness and identification on images. 
We also made an effort to reach the center of the parcel to mark its location, aiming to minimize possible errors caused by equipment. A 
total of 690 ground truth points were collected through the field survey campaigns, which record diverse land cover categories and 
main fruit tree species such as coconut (156), coconut intercropping (coconut Int., 127), pomelo (170), durian (155), and rambutan 

Table 1 
Spectral bands and resolution of acquired satellite products.

Satellite/Product Bands/Functions Central wavelength (nm) Resolution (m)

Sentinel-2 MSI (L2A) B1 – Ultra blue (coastal aerosol) 443 60
B2 – Blue 490 10
B3 – Green 560 10
B4 – Red 665 10
B5 – Vegetation Red Edge 1 705 20
B6 – Vegetation Red Edge 2 740 20
B7 – Vegetation Red Edge 3 783 20
B8 – Near Infrared 842 10
B8A – Vegetation Red Edge (narrow) 865 20
B9 – Water vapor 940 60
B10 – Cirrus 1,375 60
B11 – Shortwave Infrared (SWIR1) 1,610 20
B12 – Shortwave Infrared (SWIR2) 2,190 20

Planet-NICFI Band 1 – Blue 480 4.77
Band 2 – Green 540 4.77
Band 3 – Red 630 4.77
Band 4 – Near Infrared (NIR) 830 4.77
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(82) (Figs. 1 and 2).
However, these samples are supposed to be insufficient for a deep-learning model to distinguish fruit tree species. The more the 

sample points, the more accurate the model. Therefore, we expanded the training dataset mainly based on these ground truth points 
and other auxiliary data using QGIS 3.30.3 and digitization tools. We only expanded the marked point into a polygon by including its 
neighboring pixels with uniform characteristics instead of drawing unintentionally. Ultimately, 147,236 pixels were collected for 
training and testing the model.

2.4. Textural features

Gray-level co-occurrence matrix (GLCM) texture is a widely used method to extract textural features in high-image analysis (Park 
and Guldmann, 2020). GLCM stands on statistical methods to characterize the spatial relationships between pixels in an image 
(Alzhanov and Nugumanova, 2024). It considers the distribution of gray levels across adjacent pixels to estimate the frequency of 
similar-intensity pixels against different-intensity pixels based on two parameters of distance and direction (Mohammadpour et al., 
2022). This study adopted nine indices to extract spatial and textural features on Sentinel-2 and Planet images (Table 2) (Hall-Beyer, 
2017; Park et al., 2016).

These indices are estimated based on gray-level consideration, while each satellite image has multispectral bands. Different bands 
reflect unique information about features, which is fairly important in image analysis. Therefore, we used principal component 

Fig. 2. Field photos of five major fruit tree species demonstrate potential differences in distribution and canopy structure. Source: Authors own 
field photos.
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analysis (PCA) to synthesize spectral information from all bands into the first component (grayscale) for the GLCM analysis 
(Mohammadpour et al., 2022). The dimension reduction of PCA was completed using RStoolbox in R-4.4.2. According to an empirical 
study reported by Zhang et al. (2020), an optimum moving window of 15 × 15 was applied to calculate the GLCM texture indices for 
the Sentinel-2 image. With a resolution twice as fine as Sentinel-2, the GLCM textural features of Planet were estimated using a moving 
window of 31 × 31. The GLCM textural indices were calculated based on GLCMTextures package in R-4.4.2.

2.5. Data normalization and information extraction

Sentinel-2 and Planet images are encoded in different data levels (bit depth). Textural value ranges are also disparate between 
indices. It is challenging for machine learning models, which work better with scaled data than original digital numbers. Each in-
formation band was then normalized to spread the image values between 0 and 1 according to Equation (1). 

xscaled=
x − xmin

xmax − xmin
(1) 

Subsequently, we extracted values of normalized bands at reference polygons. This dataset was randomly split into two isolated 
datasets: training (70 %, 103,067 pixels) and validation (30 %, 44,169 pixels) datasets (Can et al., 2021).

2.6. Convolutional Neural Network

Convolutional neural network (CNN) is a deep learning model expected to boost model convergence and improve classification 
performance compared to traditional classifiers. We used 1D-CNN model to analyze input features (i.e., spectral bands and textural 
features) as one dimension data using the concepts of pixel-based classification. The 1D-CNN model was selected to leverage the 
model’s simplicity compared to 2D-CNN and 3D-CNN, while it emphasizes how spectral and textural information contribute to the 
classification of fruit tree species. The training data is location-based and collected using GPS device, which is inherently better 
represented by a one-dimensional vector of spectral band and textural features rather than 2D spatial image. Moreover, the machine 
learning models used for comparison are also one-dimensional, so employing the 1D-CNN ensures a fair peer-to-peer comparison and 
minimizes biased evaluation between models.

This study built a relatively light CNN model with fewer hidden layers and parameters using the Keras Sequential (Fig. 3). The 
model begins with combining two Conv1D layers to filter the input data and allow the network to learn more complex features. These 
layers use the same number of neurons (n=128) and a kernel size of 2. A parameter of padding (Same) was introduced to ensure the 
output from filter has the same length as the input by padding the edges. Subsequently, a 1D max polling was added to reduce the 
output length by half and retain the most prominent features by taking maximum values. This consideration moves over a window size 
of 2. The first layer ends up with a “Dropout” function to prevent overfitting, which randomly sets a fraction of input units to zero (20 
%).

The second conventional block has relatively similar parameters to the first block. However, it has a double filter (n=256). In both 
conventional blocks, the activation function was ReLU (Rectified Linear Unit) (Eq. (2)), which introduces non-linearity to approximate 
complex functions and learns intricate patterns from data. 

ReLU(x)=max(0, x)
{

x > 0, x = x
x ≤ 0, x = 0 (2) 

Table 2 
Textural features and corresponding equations.

Textural features Equation Description

Angular Second Moment 
(ASM)

∑N− 1
i,j=0

Pi, j2 ASM represents the image’s roughness, which is rougher with a higher ASM value.

Contrast (CON) ∑N=1
i,i=0

Pi, j(i − j)2 CON is also called a sum of squares variance. It reveals the textural thickness. The higher value of CON 
describes the more different between adjacent pixels.

Correlation (COR)
∑N− 1

i,j=0

⎡

⎢
⎣
(i − μi)(j − μ)

̅̅̅̅̅̅̅̅̅̅
σ2

i σ2
j

√

⎤

⎥
⎦

COR measures the linear dependency of gray levels on neighboring pixels in rows and columns. A higher 
correlation has a greater value of COR.

Dissimilarity (DIS) ∑N− 1
i,j=0

Pi, j|i − j| DIS reflects another aspect of image’s heterogeneity.

Entropy (ENT) ∑N− 1
i,j=0

Pi, j( − lnPi, j) ENT gives rich information within a window. The more complex the texture inside a considering window, 
the higher the value of ENT.

Homogeneity (HOM) ∑N− 1
i,j=0

i
Pi, j

1 + (i − j)2)
HOM characterizes the smoothness of the image. A smoother and more uniform image has a higher value 
of HOM.

Mean (MEA) ∑N− 1
i,j=0

i(Pi, j) MEA reflects the average value or brightness in the moving window.

Variance (VAR) ∑N− 1
i,j=0 (Pi, j − μ)2

N − 1

VAR highlights the contour of each homogenous polygon in terms of gray level.

Sum average (SA) ∑N− 1
i=0

iPx+y(i) SA measures mean values of the sum of pixel intensities in images derived from gray levels.
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A global max polling one-dimensional layer reduces the dimensionality of output from conventional layers to a single layer. It takes 
maximum values over the time dimension for each feature map, thereby summarizing the presence of features over the entire input 
sequence.

Fully connected layers consist of two dense layers using the activation function of ReLU to learn high-level features. The first dense 
layer has 256 neurons, and the second dense layer reduces half the number of neurons (128). After each dense layer, the dropout 
function (20 %) was introduced to restrain the overfitting. The final output layer was obtained by applying Softmax activation function 
(Eq. (3)), which converts the raw output scores from the network into probability distribution over multiple classes in the classification 
task. 

σ(zi)=
ezi

∑n

j=1
ezj

(3) 

The CNN model was then examined by an optimizer of Adam (Adaptive Moment Estimation) to improve the training accuracy and 
minimize the loss function, thereby enhancing the model’s performance. Adam is widely adopted in land use, cover classification tasks, 
which takes advantage of two other optimizers (i.e., AdaGrad and RMSProp) (Eq. (4))—AdaGrad works well for sparse gradients and 
RMSProp is good for non-stationary settings (Bhosle and Musande, 2019). Adam is effective when working with large datasets and 
parameters without much memory and resources. A categorial cross-entropy loss function was combined with Softmax activation 
function for a multi-classes classification (Sameen et al., 2018). 

mt = β1mt− 1 + (1 − β1)gt (4) 

2.7. Machine learning models

In addition to CNN, this study also examined the classification performance of five other machine learning models, commonly 
applied in land use and land cover classification using satellite images. K-Nearest Neighbor (KNN) is a non-parametric supervised 
algorithm without demands on class density function. It assigns a class to a data point that is the most identical to the sample on the 
training data based on Euclidean distance basis and given initial k value (Prasad et al., 2022). Gradient Boosting Machine (GBM) is a 
widely used algorithm in LULC classification using satellite images. It takes advantage of ensemble machine learning algorithms by 
employing decision trees in its classifiers (Nery et al., 2016). Although GBM has been efficiently applied in several applications, even in 
species prediction, its application in recent studies is overshadowed by state-of-the-art machine learning classifiers because it may lead 
to overestimation and having many parameters to tune (Georganos et al., 2018). Naive Bayes classifier (NB) stands on the Bayes 
theorem to estimate the probability of chance for an event. It uses strong/naive assumptions of independence between features to 
calculate the probability of a data point belonging to a land use class rather than another based on feature values and classify each data 
point in the dataset (Palanisamy et al., 2023). Random Forest (RF) is among the most applied machine learning classifiers for LULC 
classification tasks. RF has the advantages of a non-parametric algorithm, high classification accuracy, and robustness to noises with 
fewer parameters to be set against other classifiers (Pal, 2005; Tikuye et al., 2023). It consists of many decision tree models trained by 

Fig. 3. The proposed concept of CNN model architecture.
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bootstrap sampling, which considers some vectors more than once in a classifier thereby improving the classification accuracy. In the 
RF model, the number of trees (ntree) parameter should be large enough to ensure that every data point is considered at least once. The 
final model is Support Vector Machine (SVM), which uses an optimally separating hyperplane to classify categories. It is especially 
appropriate for high-dimensional datasets with less training sample requirements than other algorithms (Nguyen et al., 2022; Noi and 
Kappas, 2018). In land use and land cover classification tasks, the common kernel used in SVM is the radial basis function (RBF) kernel 
(Jodzani et al., 2019). These machine learning models were initialized and trained using scikit-learn, which is the most popular 
open-source machine learning library in Python. This library also gives us different tools for model selection, validation, and tuning 
model parameters. The hyper-parameters of the above machine-learning models were tuned using grid search function (GridSearchCV) 
to detect the optimum parameters for each model (Table 3).

2.8. Performance assessment

The classification tasks were evaluated by a confusion matrix based on the true labels and predicted labels. Four variables were then 
extracted, which include true positive (TP), true negative (TN), false positive (FP) and false negative (FN). Specifically, TP occurs when 
the model correctly predicts a positive class. TN is an outcome when the model correctly predicts a negative class. FP appears in case 
the model incorrectly predicts a positive class (Type I error). FN is an outcome of a false prediction for a negative class (Type II error). 
These are vital variables to estimate accuracy parameters of accuracy, precision, recall, and F1-score to evaluate the performance and 
correctness. Accuracy measures the overall power of the model’s prediction. Precision measures the accuracy of the positive pre-
diction. A higher precision value indicates that the model returns more relevant labels than irrelevant labels. Recall reflects the model’s 
ability to catch all relevant labels. F1-score gives a single metric balancing precision and recall evaluating the model’s performance, 
especially when the class distribution is imbalanced. 

Accuracy=
TP + TN

TP + TN + FP + FN
(5) 

Precision=
TP

TP + FP
(6) 

Recall=
TP

TP + FN
(7) 

F1=
2TP

2(TP + FP + FN)
(8) 

We also estimated variable importance using permutation feature importance to explore their contributions to fruit tree classifi-
cation. This compares the accuracy of the model without a specific variable to the fitted model. The result was evaluated by mean 
decreased accuracy for each variable. The more important the variable, the higher the decreased accuracy value.

3. Results and discussion

3.1. Spectral and textural information of different fruit trees

The potential to differentiate tropical fruit trees based on spectral bands and textural information derived from Sentinel-2 and 
Planet images is demonstrated visually in Fig. 4, which visualizes the overlapping rate (OR) between different pairs of fruit trees 
corresponding to each information band. The overlapping rate estimates an identical shade between two density graphs, constructed 
from extracted data points to reveal how much these two graphs of a specific index are similar (Pastore, 2018). The higher the 
overlapping rate, the more difficult it is to distinguish two fruit trees based on that index. The fruit trees in the study area are all 
tropical fruit trees with relatively similar biophysical characteristics. Therefore, these fruit trees are relatively difficult to discriminate 
with most overlapping rates above 50 %. Some of them are even identical when considering entire indices, such as coconut versus 
coconut intercropping (OR = 91.1 %), durian versus rambutan (87.7 %), and durian versus pomelo (86.3 %). It means that isolating 
other fruit trees from coconut and coconut intercropping gardens is challenging.

In terms of spectral and textural information, they were also grouped into three main groups based on overlapping rates reflecting 

Table 3 
Hyper-parameters were used in five machine learning models.

Model Hyper-Parameters

K-Nearest Neighbor (KNN) n_neighbors = 5
Gradient Boosting Machine (GBM) n_estimators = 100, learning_rate = 0.1, max_depth = 2
Naive Bayes (NB) priors = None, var_smoothing = 1e-09
Random Forest (RF) n_estimators = 200, max_depth = 10, max_features = ‘sqrt’
Support Vector Machine (SVM) kernel = ‘rbf’, C = 1, degree = 3, gamma = ‘scale’

*Note: Other hyper-parameters in the above machine learning models are set as default values.
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discrimination ability among these fruit trees. Group 2 (G2) has a low discrimination ability with an almost overlapping rate above 80 
%. Group 3 (G3) shows good discrimination ability for coconut and coconut intercropping from other fruit trees, accounting for about 
half of the information bands. Group 1 (G1) implies exceptional differentiation for coconut and others with low overlapping rates (OR 
< 70 %) as well as a promising ability to distinguish the remaining species.

3.2. Classification performance from machine learning and CNN models

The machine learning and CNN models were trained and tested using two separate datasets to investigate the classification 
capability of fruit trees. Spectral bands and textural indices from both Sentinel-2 and Planet were included in the classification. The 
general results yielded different overall accuracy and F1-score across classifiers (Fig. 5), overall accuracy and F1 reflect general power 
of model and performance of multi-classification models. Specifically, NB showed a relatively low classification capability, with ac-
curacy of 40 % and F1-score of 32 %. SVM had a medium classification capability (accuracy and F1-score approximately 61 % and 48 
%). A group of two classifiers (including RF and GBM) performed relatively accurate classification, about 70 % accuracy, and F1-score 
achieved from 63 to 65 %. Among them, KNN and CNN indicated exceptional capability in distinguishing fruit trees with an accuracy 
of about 88–89 %. The F1 scores for KNN and CNN are fairly comparable, yet CNN is a slightly better classifier based on accuracy and 
F1-score.

Fig. 4. Heatmap illustrates overlapping rates between different pairs of fruit trees over spectral bands and textural indices. Prefix P. indicates 
Planet-derived information. Dendrograms group fruit tree combination and indices into identical clusters.

Fig. 5. Overall accuracy and F1-score were obtained from different models in fruit tree classification.
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The confusion matrix of six machine learning and CNN models illustrates the performance of classifiers for each individual fruit tree 
(Fig. 6). CNN and KNN models generally achieved fairly high performance for all fruit trees, as reflected by the above overall accuracy. 
More explicitly, coconut was best classified by CNN (94 %), followed by KNN, RF, GBM, SVM, and NB in descending order. KNN 
expressed the highest performance for coconut intercropping (88 %), followed by CNN (83 %). GMB, RF, and SVM showed medium- 
high capacity, approximately 64–72 %. In contrast, nearly half of coconut intercropping was misclassified by the NB classifier. Major 
misclassifications were found between coconut intercropping and coconut monocultures, with the highest error rate was up to 26 % 
(NB). There were only three models that had high performance in durian tree recognition, which were detected by CNN (89 %), KNN 
(83 %), and GBM (63 %). SVM and RF had a relatively similar performance, which only identified around 41− 46 %. The remaining 
were assigned to coconut intercropping and pomelo trees. Only 14 % of durian trees were accurately classified by NB, while the 
remaining 46 % were supposed to be rambutan trees. CNN and KNN had an identically high performance for pomelo classification (89 
%). The small confusions between pomelo and coconut, coconut intercropping, and durian trees were found in GBM, RF, and SVM, 
limiting the classification capacity of these classifiers. Therefore, these models were only able to detect pomelo at a medium accuracy, 
approximately 59–66 %. Although NB often shows low performance, especially for pomelo (only 12 %), it exceptionally detected 
rambutan trees (67 %). Its capacity in pomelo detection was even higher than that of SVM (1.1 %), RF (32 %), and GBM (45 %). The 
SVM model could barely recognize rambutan using the current data of spectral and textural information, although it showed relatively 
high performance for other fruit trees, with 90 % misclassification for coconut intercropping and pomelo trees. Besides, CNN and KNN 
still lead in terms of performance for rambutan trees, which achieved approximately 81–82 % accuracy.

3.3. Spatial agreement between classified maps and reference layer

Spatial agreement compares classified maps from the trained models (Fig. 7 and Supplementary data) and reference layer, thereby 
reflecting the reliability of the models on data outside the training data or real data. Overall, spatial agreement increases gradually as 
follows: NB (39.2 %) < RF (52.2 %) < KNN (53.2 %) < SVM (53.7 %) < GBM (55.6 %) < CNN (56.9 %). This trend aligns with the 
accuracy assessment, where NB exhibited the lowest performance and CNN the highest. In the previous assessment, KNN had the 
second-highest accuracy, which was only slightly lower than CNN. Yet, the spatial assessment revealed instability in the classification 

Fig. 6. Confusion matrices were obtained from machine learning and CNN models, and predicted and true labels were compared. Unit: Percent.
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of KNN compared to CNN. CNN has a high spatial agreement (higher than 40 %) for every individual category except for rambutan 
(only 27.8 %), with the highest value belonging to coconut (68.8 %). However, it should be noted that individual spatial agreement of 
categories may be different between the models. The highest agreement for coconut was found in GBM (approximately 72.1 %). 
Meanwhile, KNN and RF disclosed the highest spatial agreement for durian and rambutan, respectively. Coconut intercropping, 
pomelo, and durian are fruit trees with high spatial agreement detected by the CNN model.

3.4. Important variables in fruit tree classification

In the CNN model, one variable is removed from the model to estimate a decrease in accuracy and reflect the importance level of 
each variable (Fig. 8). It reveals that Band 11 (SWIR1, Sentinel-2) is the most important variable in both the CNN model and individual 
fruit tree classification. The decreased accuracy level in the CNN model is up to 26.4 %. The other Sentinel-2 spectral bands (i.e., Band 
5, Band 2, Band 8A) also contributed around 12− 12.6 % to the classification accuracy. Textural indices from Planet (i.e., ENT and 
ASM) considerably reduced the classification accuracy by 9.7–11.9 %. About 6− 7 % of accuracy is constituted by Sentinel-2 spectral 
bands of Band 4, Band 12, band 6, and Band 7. Besides, a group of textural indices from Planet (e.g., MEA, SA, HOM, COR, and CON) 
are also important variables in the CNN model to distinguish fruit trees, with decreased accuracy above 5 %.

Fig. 7. Fruit tree maps obtained from different machine learning and CNN models based on spectral and textural indices from Sentinel-2 and Planet 
images (left panel) and spatial agreement between classified maps and reference layer (right panel). True = Matched, False = Unmatched.
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More specifically, the variables assisting in pomelo detection are Planet textural indices of MEA and SA, with a decreased accuracy 
of approximately 21 % (ASM, 11.7 %). Spectral bands from Sentinel-2 significantly improved their accuracy from 10 % up to 16.6 % (i. 
e., Band 5, Band 7, Band 11, and Band 8A).

In rambutan recognition, the classification sensitivity is mainly participated by Planet-based indicators, such as textural indices 
(ENT, MEA, SA) and spectral bands (Red, Blue, and Green bands), with an accuracy of about 6.5–9.3 %. Spectral bands from Sentinel-2, 
such as Band 8A, Band 11, Band 5, and Band 7, are also critical in the classification.

Fig. 8. Variable importance is estimated for the CNN model and each individual fruit trees. Prefix letter “P.” indicates Planet-derived spectral and 
textural information.

Fig. 9. Classified fruit tree map obtained from CNN model using spectral and textural indices from Sentinel-2 and Planet images.
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In contrast, Sentinel-2 spectral bands tend to be more important in the classification of coconut and coconut intercropping. For 
example, the absence of Band 11 in the classification reduces the classification performance by 26.2 % (coconut intercropping) and 
17.9 % (coconut). The other common Sentinel-2 spectral bands for the classification of these two fruit trees are Band 5, Band 2, Band 4, 
Band 11, Band 7, and Band 6. The Planet textural indices also improve the classification, yet they are mainly from HOM, ASM, and 
ENT.

Band 11 of Sentinel-2 decreased the accuracy of durian by 23.8 %, and it is the most informative band for this fruit tree detection. 
Other Sentinel-2 spectral bands make a modest contribution, about 10–14 % (Band 8A, Band 7, Band 5, and Band 12). It is followed by 
Planet-based CON (15.7 %). It should be noted that durian is effectively distinguished by Sentinel-2 textural indicators, such as CON 
and ENT (14− 14.4 %).

3.5. Mapping fruit trees using CNN model

Fig. 9 depicts the predicted fruit tree map by the CNN model and a combination of spectral bands and textural indices from both 
Sentinel-2 and Planet images, which is based on the trained model with above accuracy and F1-score performance. This spatial fruit 
tree map clearly illustrates the spatial distribution of individual fruit trees in the study areas, which was verified through our secondary 
field surveys and confirmed to have high similarity with actual statistics by local authorities. Yet, there is still a discrepancy in the total 
area between the statistical area and classified areas. Coconut has the lowest disparity when the classified area is higher than the 
statistics at about 5.8 %. In contrast, a significant mismatch was found in rambutan, classified as less than the statistical area, about 
2,593 ha.

About half of the total fruit growing area in the district is coconut farms (73,038 ha, 49 %), mainly concentrated in a large and 
uniform area in the east and southeast of the study area. The remaining quarter is coconut intercropping with other crops/fruit trees 
under the coconut canopy (37,150 ha) in the northeast and central part of the study area, where the junction between monoculture 
coconut and other fruit trees is considered as a junction and has high potential for conversion. The areas of durian and pomelo account 
for 11.2 % (16,705 ha) and 10.5 % (15,717 ha), which are mainly distributed in the west or the fertile headland of the islet. The 
remaining fruit-growing areas (6,468 ha) are rambutan, which is also found in the specialty fruit-growing regions of the headland islet. 
However, the rambutan gardens are more dispersed than other fruit gardens.

3.6. Discussions

Several efforts have been made to identify fruit species in orchards, mainly for subtropical and temperate families rather than 
tropical fruits. The previous studies mainly adopted advanced data sources such as UAV, Aerial photos, LIDAR, and very high- 
resolution images to detect fruit species (Ozdarici Ok and Ok, 2023b). These advanced technologies can gain more efficiency with 
scientific rigor. Yet, it is supposed to be challenging to replicate in extensive areas in developing countries because of technical and 
financial constraints. This study plays as one of a pioneering case studies to leverage the combination of freely accessible satellite data 
sources, textural features, and modern image analyses from machine learning and deep learning classifiers in the identification of 
tropical fruit trees. The proposed approach based on spectral and textural indicators from both Sentinel-2 and Planet images yielded a 
relatively good accuracy (approximately 89 %) with high spatial agreement compared to reference data as well as verified by local 
departments (Section 3.2 and Section 3.3). It also demonstrates the potential for large-scale replication, as opposed to UAV-based data, 
which is typically only applicable at the smallholder level.

The current studies mainly exploit temporal signals from time series data to distinguish tree species (Peña and Brenning, 2015; 
Zhou et al., 2022b). It only shows high potential for temperate fruit species with clear leaf-shedding and flowering seasons or between 
species with very different leaf-shedding and flowering seasons. For tropical fruit trees, they are mostly evergreen all year round. 
Although they have a leaf-growing season, they usually occur simultaneously in the rainy season. Therefore, even using time series 
images can hardly help in identification (Section 3.1). Also, obtaining continuous time series images in tropical monsoon climate 
regions is not easy due to the influence of clouds during the rainy season. Meanwhile, their leaf and canopy characteristics are 
relatively different, for example, pomelo leaves often have broader leaf blades than rambutan leaves, which has the potential to 
differentiate between them. It was proved via our analysis that textural information reflecting leaves and canopy characteristics always 
appears among the most important variables for classification (Section 3.4). Planet-based textural indices are more critical than 
Sentinel-2 textural indices because of their finer spatial resolution, which captures more textural details to discriminate fruit trees. In 
contrast, Sentinel-2, with its broad spectral range, plays a key role in contributing spectral bands to the classification process, 
particularly in the infrared and shortwave infrared wavelengths which are essential for assessing vegetation health and conditions.

Among the considered models, CNN showed the highest and fairly balanced performance for different fruit tree classifications 
(indicated by the confusion matrix, Section 3.2). However, based only on evaluation parameters such as accuracy and F1-score, it is 
difficult to determine the most appropriate model because KNN also showed promising results. This is really surprising because KNN 
frequently has lower classification performance than other models. Yet, its predicting capability in an independent dataset for mapping 
entire areas significantly dropped compared to CNN. This implies that whether a model is suitable or not depends on its performance 
on the entire spatial map rather than just evaluating solely the evaluation parameters. Instead of applying a single model, users can 
adopt a specific model for their needs. For example, GBM has a good performance for coconut detection with high spatial agreement, 
while RF can yield a high spatial agreement for rambutan compared to the CNN model. It can also generate a probability map of fruit 
distribution by combining different models to leverage their powers instead of a typical single-class map. Our analysis of the variable 
importance of each fruit type also suggests the potential for application for specific purposes. For instance, when we need to identify 
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pomelo trees, we only need to extract and input into the model the top information bands that are the most important for classifying 
pomelo instead of all total 32 variables of spectral and textural layers. It therefore can save time on data preparation and resources for 
model training and prediction.

This experimental study has been completed with an attempt to leverage both spectral information and textural features from freely 
accessible high and medium resolution images, utilizing the simplicity of 1D-CNN model to map fruit tree species with a relatively high 
accuracy. It also provides insightful and fair comparisons across approaches and asserts that CNN overpassed the other conventional 
methods, even with the simplicity of one-dimensional architecture. It also promises scalability with fully available data sources and 
transparent methodology. Yet, it still has certain limitations that should be addressed and improved in future work. The deep learning 
model (CNN) frequently requires extensive training and validating datasets, however, this study even produced acceptable accuracy, 
and our dataset was still moderate. It requires an expansion of the training data in a two-dimensional format with spatial explicitness to 
upgrade the current one-dimensional architecture to a two-dimensional network (2D-CNN), which can promisingly improve the 
current fruit trees map. Since tropical fruit trees often exhibit similar features that lead to misclassification, attention mechanisms 
should be incorporated into the network architecture to enhance species classification. Furthermore, pilot studies should be conducted 
in similar regions to validate the model’s effectiveness as a basis for large-scale research.

4. Conclusion

The CNN model demonstrated better classification performance for the distribution of fruit trees compared to other machine 
learning models such as GBM, KNN, NB, RF, and SVM. Spectral bands and textural indices acquired from freely available remote 
sensing data sources of Sentinel-2 and Planet were leveraged to detect different kinds of tropical fruit species. The CNN model 
exploited spectral information mainly from Sentinel-2 and textural features from Planet to distinguish between five main fruit species, 
including coconut, coconut intercropping, durian, pomelo, and rambutan, with a relatively high accuracy (89 %). Coconut and coconut 
intercropping have the highest accuracy and spatial agreement, while rambutan and durian are challenging to discriminate from 
others. The most significant spectral contributors to the classification are Band 11, Band 2, Band 5, and Band 8A (Sentinel-2). Besides, 
Planet improves the classification by textural features of ENT, ASM, MEA, SA, HOM, COR, and CON.

The result fruit tree map developed by the CNN model achieved high performance and spatial similarity as well as major distri-
bution zones to local references and statistics. Yet, there is still a mismatch in terms of total growing areas, mostly for rambutan 
because of small and discrete growing areas.

This research is an effort to classify tropical fruit species totally based on freely accessible datasets of Sentinel-2 and Planet that 
leverages spectral and textural information instead of costly and highly advanced data sources. It has promising potential for future 
replication in other tropical areas with similar characteristics. The trained CNN model has been given in the GitHub project repository 
(https://github.com/canng/RSASE_cnnTropiTrees). However, it should be further developed to improve classification performance, 
especially for more fruit species.
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