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Abstract. The urban park is a part of urban green infrastructures, essential in urban ecosystems 

because it delivers various benefits to urban dwellers, from tangible to intangible values. The urban 

park is widely accepted as a friendly adaptive solution in the context of cities worldwide being 

warmer due to climate change and urbanization impacts. This research quantified the cooling effect 

of small and medium-sized parks in Bangkok and identified primary controlling factors. An 

integrated approach was adopted to achieve the overarching objectives, including image 

interpretation from various data sources and Trends-Breakpoints Detection Analysis (TBDA). The 

research findings revealed that summer’s most active cooling distance is around 100–200 meters. 

When the weather is cooler in winter, the cooling distance expands outward to +400 and +1000 

meters depending on park structures and neighbouring backgrounds. A park located in a region with 

denser vegetation is supposed to have a more moderate cooling effect. Increases in tree areas inside 

a park and their shape complexity can stimulate the cooling effect, especially in the cooler season. 

In contrast, the cooling effect is only contributed by the park’s water surface during the hotter period. 

The research outcomes are helpful for urban planners in heat mitigation strategies using urban green 

infrastructures. 

Keywords: Urban park, Urban green space, Cooling effect, Cooling distance, Park structure. 

1 Introduction 

Many studies revealed that Southeast Asia (SEA) cities such as Kuala Lumpur (Malaysia), 

Bogor (Indonesia), Baguio (Philippines), Yangon (Myanmar), Ho Chi Minh City, and Ha Noi 

(Vietnam), and Bangkok (Thailand) had overgone the warmer trend in land surface temperature 

(LST), about 0.03°C to 0.92°C per year (Amanollahi et al., 2016; Estoque & Murayama, 2017; 

Nurwanda & Honjo, 2019; Son et al., 2017; Srivanit & Hokao, 2012; Tran et al., 2017; Yi et 

al., 2018). Higher urban temperature is directly responsible for human thermal comfort and 

heat-related morbidity and mortality in the city (Lowe, 2016; Santamouris, 2020). It also causes 

pressures on the economy and energy sector for cooling demands, especially during heat waves 

(Nguyen et al., 2021). Besides, these studies indicated that urban temperature alterations always 

occur in parallel with urbanization, which induces impervious surface extension and vegetation 

narrowing. These nexuses imply potential solutions for urban design strategies to reduce the 

harmful effects of heat exacerbation based on the basic notion of maximizing urban green areas 

like public parks. In the context of urbanization and escalating climate change, the urban 

environments are intended to be more severe for their inhabitants. Thus, the role of urban green 

spaces and public parks in mitigating the urban climate severity is more prominent and apricated 

by managers and urban dwellers. 
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On the other hand, large parks frequently attract more attention because they are supposed to 

have diverse and more significant benefits than small green spaces. In a crowded city, most 

land budget is prioritized for residential areas and solid urban infrastructures rather than large 

patches of green spaces (Nguyen & Chidthaisong, 2022). Planning extensive urban forests is 

challenging. Therefore, we intended to examine the cooling effect of small and medium-sized 

parks, potentially appropriate for urban greening plans. Additionally, the cooling distance is a 

principal parameter in the cooling models, e.g., the InVEST-Urban Cooling Model (Hamel et 

al., 2021). It is diverse and fluctuates from park to park depending on many factors. When the 

cooling distance is specified, the model performance will significantly improve. The factors 

controlling the cooling effect will substantially affect a prototype park design to apply to other 

current and future parks. 

This research stands on exploiting diversely free-accessible data to investigate the cooling effect 

given by the public parks, in which Bangkok is an empirical study. The controlling elements 

moderating the cooling effect were then analyzed to identify the impacts of the park’s structure 

and the external environment on the cooling effect, which are helpful information for urban 

planning toward heat mitigation strategies in the city. 

2 Study sites and Datasets 

2.1 Study sites  

Five parks were selected along the urban-periurban gradient of Bangkok (Thailand), 

considering their popularity and usable area (Fig. 1). The most extensive park is Chatuchak 

botanical garden which comprises three adjacent parks of Wachira Benchtas, Queen Sirikit, and 

Chatuchak. Its usable area is 110 ha and has become one of the essential urban green spaces in 

a compact city like Bangkok. It is followed by Suan Luang Rama IX (shortly Rama 9) with 

nearly 80 ha. The following two parks are relatively similar in terms of usable area, Lumpini 

(57.6 hectares) and Serithai (56 ha). However, they own significant disparities in location and 

park structure. Lumpini is supposed to be a “green asset” in a cramped city, while Serithai has 

its role in rainwater regulation in the peri-urban of eastern Bangkok. And, Thonburirom (10.058 

ha) is located on the city’s west side, which plays a crucial role in aesthetics and its surrounding 

neighbours' environment.  
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Fig. 1. Location of Bangkok, the considered parks, and air quality stations within Bangkok boundary. 

2.2 Air temperature data 

We obtained air temperature data from the Thailand Pollution Control Department (PCD), 

which includes 14 stations within the Bangkok metropolitan region. The stations are set up at 

roadside and ambient locations to hourly measure air temperature. The temperature at each 

station was selected based on date and time criteria. In particular, we obtained the air 

temperature at 10:00 am for analysis because the initial test showed that LST and air 

temperature reached their highest correlation value at 10:00 am. 

2.3 Landsat 8 imagery 

Landsat 8 (OLI/TIRS) surface reflectance is the primary data source to extract surface 

characteristics and simulate air temperature from these features. The land surface reflectance 

(LSR) data is atmospherically corrected using Landsat Surface Reflectance Code. The LSR 

minimizes atmospheric influences, especially on temperature data, which is relatively 

susceptible to atmospheric and cloud conditions. We acquired images of clear sky or limited 

clouds covering the study sites and ambient regions under satisfied weather conditions. Seven 

scenes were captured at seven milestones from 2014 to 2016 for training and validating the air 

temperature predictive model. Whereas the clear-sky images acquired on 19/02/2020, 

22/03/2020, and 17/11/2020 were adopted to simulate spatial air temperature for further 

analyses in this study. 

2.4 Google Earth-based imagery 

The park’s landscapes should be classified by very-high-resolution imagery (VHR) since its 

scale is often small. Yet, we cannot access commercial satellites in this study. Fortunately, 

Google Earth provides free accessibility to its VHR at different times. Although Google Earth 

imagery (GEI) cannot offer diverse spectral information as a standard multispectral image, it 

can adjust the details to be observed. Thus, the GEI becomes a cheaper VHR data source widely 
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applied in urban studies (Malarvizhi et al., 2016; Mering et al., 2010). We collected GEI at each 

park using the SASPlanet (v200606) tool. The pixel size of the collected GEI is approximately 

0.3 meters per pixel edge.  

2.5 Sentinel-2 imagery 

GEI is proper for mapping in detail land cover for a small-scale area, it, however, shows 

limitations in a vast region when the detail of GEI becomes its drawbacks in terms of processing 

performance. More explicitly, there are potential noises from building shadows, colors of 

different roof materials, tree canopy structures, and even water surface waves. Therefore, we 

adopted moderate-high spatial resolution satellite imagery of Sentinel-2 (10 meters) to classify 

landscape information around the park from its border to 2 km. Sentinel-2 L2A images were 

collected with an acquisition strategy of the smallest difference in capture date Landsat-8 

images above. Two scenes were downloaded directly from the Sentinel Hub on 21/02/2020 

(10:37) and 29/08/2020 (10:35). These images have a low cloud coverage rate of 0.47% and 

5.81% for the image in February and August.  

3 Methodology  

3.1 Land cover of the park and surrounding areas 

Landscapes of the parks were classified by Google Earth imagery. It comprises five land cover 

categories: wood tree, grassland, soil/pavement, buildings, and lake/pond. Firstly, the acquired 

images were reprojected before they were analyzed by object-oriented classification. The 

images were then overcome through a segmentation procedure, which groups nearby similar 

pixels together. Segment Mean Shift (SMS) technique was adopted to analyze the GEI. 

Subsequently, the segmented images were classified by the ISODATA (Iterative Self-

Organizing Data Analysis) unsupervised classifier. To cluster pixels into N user-defined 

groups, the algorithm randomly sets cluster centres and assigns pixels to clusters using 

minimum distance. The clusters will be merged or split based on the minimum distance among 

the cluster’s centres. The progress is repeated until all pixels are precisely separated, and the 

number of clusters reaches the user-defined number. In this study, the initial clusters of N=30 

were set for classification. The subclusters were subsequently combined altogether if they 

presented an identical land cover type when collated with image visualization.  

The neighbouring regions of each park were extracted by multispectral imagery of Sentinel-2, 

which grouped into major land cover categories such as impervious surfaces, vegetation, water 

bodies, and bare land. The multispectral bands (i.e., visible wavelength, Red-Edge, NIR, and 

SWIR) were consistently resampled pixel size of 10 meters. Thereafter, we applied integration 

of principal component analysis (PCA) and ISODATA unsupervised classifier to retrieve park 

neighbouring land cover. The initial cluster number was defined as N=15 because Sentinel-2 

imagery is less detailed compared to GEI. Finally, the classified images were combined to 

generate a land cover map based on general land cover types.  
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3.2 Air temperature estimation using a Machine learning algorithm 

Extracting surface characteristics: The surface characteristics were described by spectral 

indices, which represent three primary land cover patterns, including vegetation, impervious 

surfaces, and water bodies. Particularly, vegetation was depicted by Normalized Difference 

Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI). NDVI is a well-known index 

to identify live green vegetation relating to photosynthetically active radiation (PAR) and Near 

Infrared (NIR) light (Karnieli et al., 2006; Tucker, 1979). However, it shows limitations when 

vegetation becomes denser. EVI was proposed to overcome the NDVI limitations by adjusting 

the NDVI formula by blue light and constants (Liu & Huete, 1995). Hence, we additionally 

obtained EVI with a desire to separate different vegetation canopies, which are expected to 

influence the air temperature. The next crucial land cover type is urban features, which mostly 

contribute to urban warming due to the thermal characteristics of urban materials. We calculated 

two urban indices (i.e., Urban Index (UI) and Normalized Difference Built-up Index (NDBI)) 

to test which index better performs for air temperature estimation. The water surfaces were 

defined by Modified Normalized Difference Water Index (MNDWI) – an optimal water index 

to locate water features in urban areas (Xu, 2006).  

Land surface temperature retrieval. Land surface temperature (LST) was retrieved using a 

widely applied algorithm, which converts DNs values to LST by calibrating brightness 

temperature (TB) using NVDI-based land surface emissivity (LSE) (Eq. 3) (Estoque & 

Murayama, 2016; USGS, 2016; Weng et al., 2004). Firstly, vegetation fraction (FVC) was 

calculated by calibrating specific NDVI pixels by NDVI values of fully dense vegetation 

(NDVIV) and completely bare soil surface (NDVIS) (Eq. 1) (Carlson & Ripley, 1997). Then, 

LSE was estimated by empirical equations using FVC for Landsat OLI/TIRs (Eq. 2) (Son & 

Thanh, 2018; Van De Griend & Owe, 1993).  

 FVC = ((NDVI – NDVIS) / (NDVIV – NDVIS))2 (1) 

  = 0.00149 × FVC + 0.985481 (2) 

 TS = (TB / (1 + (TB/)ln)) – 273.15 (3) 

where FVC is vegetation fraction; NDVIS and NDVIV are vegetation index of fully dense 

vegetation and bare soil, respectively; OLI are land surface emissivity for Landsat OLI; TS is 

the land surface temperature (oC); TB is brightness temperature in Kelvin;  is the wavelength 

of emitted radiance (i.e., Landsat OLI is band 10, B10 = 10.89 µm);  = hc/, with  =1.438×10-

2 Mk;  is the land surface emissivity.  

Optimal distance determination. Air temperature at a particular location is regulated by its 

surrounding landscape rather than its land cover. Therefore, we should determine which 

distance that land cover mostly drives air temperature variation. Firstly, aggregated images of 

surface indices were generated with the number of pixels on each edge that belongs to an odd 

number subset F = {3,5,6,…, 65,67}. These pixels correspond to distances from 90 to 2,100 

meters from the stations. The index values were extracted and compared to air temperature at 

10:00 a.m. using the Pearson correlation coefficient. The distance of each index was noted when 

the correlation coefficient achieved the first highest value. The influential distance was 

subsequently determined as a general distance throughout all indicators. The influential 

distance is 750 meters. 
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Air temperature predictive model. LST is a critical variable in air temperature prediction models 

because it has the most significant relationship with other surface indicators (Hereher & El 

Kenawy, 2020; Sohrabinia et al., 2015). The best model was detected through a model 

performance test using cross-validation. Specifically, the simple model of only LST, its 

combination with each surface indicator, and two other synthetic models of the Random Forest 

algorithm (RF) were evaluated with iteration N=1000. The most optimal model is determined 

when a model achieves a higher accuracy with fewer predictors. Finally, the optimally 

predictive model was applied to its contributors of spatial surface elements to simulate air 

temperature entirely in study areas. 

3.3 Analyzing climate regulation effect 

The influential distance of the park was analyzed by trend and breakpoint detection analysis 

using the green-brown R package (Forkel et al., 2013). Theoretically, the green growth is 

performed on time series data to explore how the land phenology changes. This study assumed 

that air temperature variation every 100 meters until 2,100 meters is a node in time series data. 

The influential distance was detected at a breakpoint where air temperature significantly drops 

from the park site.  

In addition to the LULC area, the landscape metrics, including Percentage of Landscape 

(PLAND), Aggregation Index (AI), and Landscape shape index (LSI) were computed for park 

structures and surrounding areas for each 100-meter buffer zone (McGarigal et al., 2012). 

Subsequently, we analyzed the correlation between air temperature difference (i.e., the gaps 

between near-park and highly-dense urban areas) and each landscape metric using the Pearson 

correlation coefficient.  

4 Results and Discussions 

4.1 Park’s land cover structure 

Landscapes of the considered parks interpreted from GEI are shown in Fig. 2. Unlike the classic 

parks only occupied by plants, these parks incorporate diverse landscapes of wood trees, lawns, 

and water surfaces (Fig.2-A). These designs are based on modern design perspectives to provide 

rich sceneries and take environmental advantage. In addition to the difference in the usable area, 

their structures are relatively diverse. The pivotal object throughout the park is vegetation, i.e., 

it is contributed by any green patch. The tree proportion always maintains from 38.8% (Serithai) 

to 60.7% (Thonburi) (Fig. 2-B). Lumpini and Chatuchak also hold a rather considerable area of 

the tree, about 51.9% and 49.2%, respectively. Plus, Chatuchak park is used 30.3% of the usable 

area for wide lawns, the most extended lawn area among the parks. Regarding the contribution 

of water surfaces in the parks, Serithai is highlighted with a central lake, where the surface area 

rate is up to 34.7%. 
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Fig. 2. Landscape proportion in the considered parks delineated from GEI. 

4.2 Spatial air temperature  

The optimal distance for air temperature simulation was 750 meters. The influential distance 

was utilized as a buffer distance to extract surface indicators for model testing. Model accuracy 

for different RF-model combinations is shown in Table 1. Notably, the model with solely LST 

achieves relatively high accuracy, 0.91 ± 0.028. Adding one or more auxiliary data of surface 

indicators improves the accuracy of air temperature simulation. Among vegetation indices, the 

model contributed by EVI is more efficient than the NDVI model, which accuracy is 0.94 versus 

0.93 respectively. The models of the urban index are not much different in performance 

assessed by mean accuracy; nevertheless, the UI model reaches higher maximum accuracy 

implying potential efficiency compared to NDBI. The model with MNDWI contribution also 

obtained 0.94±0.02. According to these analyses, we proposed and tested an optimal model 

(M7), constituted by the favourable elements (i.e., LST, EVI, UI, and MNDWI). Its 

performance reached a high level of 0.96 ± 0.014 against the above models, with the highest 

value even achieved at 0.98. The model performance of all elements (M8) is not much 

distinctive from the M7 model, while the M7 model is able to simulate air temperature with 

fewer variables. As a result, the M7 model was considered an ideal model for spatial air 

temperature estimation in Bangkok, R2 = 0.91 and RMSE = 0.89. The spatial simulation for air 

temperature entirely in Bangkok on free cloud dates of 19/02/2020, 22/03/2020, and 17/11/2020 

was obtained by applying the ideal M7 model.  

Table 2. The accuracy obtained by cross-validation from different models 

Model  Predictors Average Accuracy Std. 

M1 LST 0.906 0.0285 

M2 LST, NDBI 0.941 0.0185 

M3 LST, EVI 0.932 0.0225 

M4 LST, UI 0.942 0.0187 

M5 LST, NDVI 0.924  0.0273 

M6 LST, MNDWI 0.936 0.0208 

M7 LST, EVI, UI, MNDWI 0.954 0.0150 

M8 LST, NDBI, UI, NDVI, EVI, MNDWI 0.958 0.0136 
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4.3 Spatiotemporal distinctness in cooling effect distance  

The average Ta within the park boundary extracted from the estimated air temperature is shown 

in Table 2. Overall, the park air temperature increases from February to March, and in 

November, it drops to values less than that in February. The highest temperatures throughout 

the months are at Chatuchak park, while the lowest temperatures are held by Thonburirom park 

(February and November) and Serithai (November). Regarding temperature variation, for 

example, here we consider temperature variation between February and March, which shows 

the most easily variable parks are Lumpini (Ta=2.29°C) and Thonburirom (Ta=2.14°C). On 

the contrary, Serithai and Rama 9 tend to be more stable in temperature over time, especially 

Serithai Ta=0.55°C.   

Table 3. Average air temperature (oC) at each park in February, March, and November 2020. 

Park February March November 

Chatuchak 27.678 ± 0.971 29.561 ± 0.879 27.417 ± 1.064 

Lumpini 26.893 ± 0.166 29.180 ± 0.367 26.617 ± 0.496 

Rama 9 27.087 ± 0.139 28.352 ± 0.522 26.577 ± 0.257 

Serithai 27.659 ± 0.252 28.205 ± 0.487 27.989 ± 0.248 

Thonburi 26.372 ± 0.035 28.513 ± 0.352 25.283 ± 0.001 

 

We investigated the cooling capacity of each park using breakpoint analysis (Fig. 3). Firstly, 

the Ta value changes along the horizontal buffer zones from 0 to 2000 meters were assumed 

and analyzed as annual time series data. Then, the trend and breakpoints were tested to point 

out the statistically significant trends and breakpoints. The principles accepted for this analysis 

is the temperature at the park, which is controlled by cooling features such as wood trees, lawns, 

and water surfaces, being coolest in comparison to surrounding impervious surfaces; plus, the 

temperature gradually increases under the influences of dense urban areas until the temperature 

drops again when it reaches rural areas.  

Chatuchak is able to control the temperature around the park by about 600±100 meters in 

November. The influential distance is narrowed from February to March, approximately 

200±100 meters (i.e., it can cool up to 400 meters) and 200±100 meters. The Lumpini Park can 

also cool down its neighbouring areas up to 600±100 meters in winter. Yet, this distance is 

solely 200 meters in February. In the mid-summer, Lumpini Park does not have a cooling 

capacity anymore.  

Surprisingly, the biggest park of Rama 9 Park has no significant cooling effect through the 

analysis for both February and March. The cooling effect, however, significantly improves in 

the winter season. The areas around the park, about 900±100 meters, are mostly affected, and 

the active distance can expand up to 1200 meters. In Serithai park, only the areas adjacent to 

the park, about 100 meters, receive the park cooling effect. The affected areas enlarged by 200 

meters in November. 
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In contrast to other parks, i.e., the cooling effect weakens in the mid-summer, the Serithai park 

shows an outstanding regulative capacity of 500±100 meters. The smallest park of Thonburirom 

park can reduce the air temperature by around 200 meters and 100 meters in February and 

March. However, these distances are insignificant. During the winter season, the active cooling 

distance achieves 1600±100 meters, which is the most extended distance among the considered 

parks in Bangkok. 

 

Fig. 3. Temperature changes along horizontal transect and changepoints. 

4.4 Pivotal factors regulate park cooling capacity 

The park’s cooling capacity fluctuates throughout the year depending on seasons, while its 

inside structures and surrounding environments remain relatively stable simultaneously. Our 

analyses for temperature variations within 100 meters and 500 meters, 100 meters represent a 

location cooled down by the park, and 500 meters is a place of denser urban areas (Fig. 4), 

revealing the parks’ temperature and their cooling magnitude are closely associated with 

location and park structures. For instance, the temperature gap between the two mentioned 

locations in November (i.e., when all parks’ cooling capacities tend to be consistent and 

clarified) decreases gradually in Chatuchak (0.367°C), Lumpini (0.244°C), Rama 9 (0.13°C), 

Thonburi (0.042°C), and Serithai (0.016°C). The more significant the temperature gap, the more 
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greatly significantly the park with high cooling capacity is. It means that Chatuchak and 

Lumpini have higher cooling capacity than other parks.  

Fig. 4 shows the background of the parks where they are located. Regarding urban density from 

500 meters outwards, Chatuchak and Lumpini stand within the urban areas with the urban 

density exceeding 50% from 300 meters. Similarly, Serithai and Thonburi are determined to be 

in peri-urban areas as the urban densities fluctuate around a threshold of 50%. Rama 9 is a 

suburban park since its surrounding urban density is approximately 35% within the first 1500 

meters from the park boundary. The correlation analysis of the park’s neighbouring areas 

influences the park’s temperatures and cooling capacity. The results concede that the park 

cooling capacity is assisted by outside vegetation existence, in which an increase in shape 

complexity of vegetation patches and green areas is the most meaningful factor. In contrast, the 

cooling effect is weakened by increasing impervious surfaces. 

 

Fig. 4. Proportion of LULC from the park boundary outwards to neighbouring areas.  

Regarding the park itself structures, it tends to be more influential in the cooling effect. The 

tree area is the most statistically significant element controlling cooling intensity (R=0.97, 

P<0.01). The tree arrangement, i.e., green patches, are planted closely together into plates of 

complex shapes, which also governs to cool-down park's neighbouring areas. Besides, the water 

surface area inside the park in the form of a lake and wetland helps to improve the cooling 

capacity outside the park.   

The correlation analysis between the park characteristics, background patterns, and cooling 

intensity is shown in Fig. 5. The results indicate that both the outside and inside environments 

drive the cooling effect. In particular, the relationships are more significant in November 

against February and March. Outside vegetation substantially influences park cooling intensity, 

with an increase in vegetation proportion (PLAND) and its assembly into big patches (AI, LPI) 

being the most important determinants. In contrast, the compact impervious surfaces are 

represented by the spatial metrics of area, proportion, and aggregation, significantly weakening 

those effects encouraged by green spaces. In terms of the park’s structures, the tree area is the 

most statistically significant factor influencing cooling intensity, notably in November (R=0.97, 

P ≤ 0.01). The influence is moderate in February and even non-existent in March. The tree 

arrangement, i.e., green patches, are planted tightly together to form plates of close and 
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complicated shapes (i.e., AI and LSI), which also cools the park’s surrounding regions. 

Furthermore, the park’s water surface area, such as the lake and marsh, aids in improving the 

cooling capacity outside the park, particularly during the hot season. 

 

Fig. 5. Heatmap shows correlation coefficients between cooling effect and landscape metrics. Note: Symbols (*) 

and (-) indicate significance levels at ≤5% and ~10%.  

4.5 Implications for urban environment and planning 

The considered parks in this study are ranked from small to medium size (10–110 ha). However, 

the active cooling distance is smaller than about one-third of a 150-ha park (200–300 m) 

(Hamada & Ohta, 2010) and six times that of a 680-hectare large park (~1400 m) (Yan et al., 

2018). Therefore, in urban green space design, small and medium-sized parks placed at the 

most beneficial distance from each other should be emphasized to maximize the limited urban 

land budget while ensuring accessibility for all inhabitants. Furthermore, a reasonable 

distribution of parks with other green infrastructures outside the parks disperses the 

concentrated pressures, which can improve the cooling effect. 

Heat reduction is supported by combining blue and green spaces. Timber trees should be the 

primary focus. However, water surfaces that play a supportive role, such as a tree-shaded lake 

and artificial wetland with appropriate aquatic plants, should be applied in urban planning 

instead of a monotonic and extensive lake. A lawn serves as a venue for outdoor leisure, such 

as picnics, assemblies, and group activities, and a place to set up the exercise equipment, while 

a cluster of wood trees decreases air temperature. To minimize monotonic landscapes, the 

proportions of wood trees, lawns, and lakes within a park should be properly adjusted. The 

arrangement of trees should be considered, with individual trees being replaced with clusters of 

trees with intricate forms and edges to increase cooling capacity. 

Though landscape integration is important to enrich urban biodiversity and exploit different and 

beneficial angles, the water surface's cooling effect is prominent in hot weather (Yi et al., 2018). 

Plus, the effect is reduced at nighttime due to heat release, especially for polluted water in the 

city. Therefore, in park design, the ratios of vegetated surfaces to water surfaces should be 

insightfully considered to diversify landscapes and optimize the cooling impact over time. 
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5 Conclusion 

The cooling effect of public parks and the elements that influenced it were investigated. Using 

multiple data sources, we found integrated landscapes in all parks with a high share of green 

and blue areas at various combinative ratios. Aside from that, there are differences in cooling 

distance, which vary according to the season. During the summer, the active cooling distance 

is usually between 100 and 200 meters. However, the cooling distance extends outward 400 

meters and up to 1000 meters, depending on park structures and the surrounding background. 

The tree area inside the park and the arrangement of green space patches are the most critical 

factors controlling climate regulation. Although the other neighbouring elements are 

insignificant in statistics, they are worthily considered in urban planning strategies to mitigate 

urban heat islands, such as low urban density, high vegetation area, and vegetation shape 

complexity. Furthermore, the water surface provides an unsteady cooling effect both within and 

outside the park. As a result, the use of water surfaces as part of a heat mitigation plan should 

be carefully examined to achieve a more appropriate and sustainable strategy for urban 

development. 
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