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Global biodiversity is rapidly declining, primarily due to agricultural production driven by both 
domestic and transboundary consumption. This study addresses the challenges posed by inconsistent 
spatiotemporal biodiversity data by developing a time series of biodiversity loss footprints based 
on Biodiversity Intactness Index (BII). Numerous land use, land cover, and auxiliary datasets were 
integrated to produce a consistent time series of high-resolution harmonized land use (HHLU) 
maps. These maps were utilized to quantify spatial BII using linear-mixed effect models. Biodiversity 
intactness loss (BII footprint) was subsequently attributed to specific crops and livestock commodities. 
This study provides comprehensive global datasets, including HHLU and BII maps, and synthesized BII 
footprints across 14 biomes, 193 countries and territories, 154 crop items, and 9 livestock categories 
from 2000 to 2020. These datasets facilitate spatiotemporal analyses to identify trends and patterns in 
global biodiversity integrity and biodiversity footprints, thereby elucidating the ecological trade-offs 
embedded in international trade. These insights can encourage appropriate interventions to transform 
consumption patterns and supply chains toward the effective conservation of global biodiversity.

Background & Summary
Despite the multiple ways humans have become disconnected from the rest of the natural world1, people remain 
inherently dependent on ecosystems and the services they provide2. However, human behavior continue to 
escalate global declines in biodiversity and ecosystem services. Recent studies consistently document systemic 
declines in global biodiversity with reference to multiple domains and indicators in the past decades3. These 
data are based on various baselines, including temporal declines in species populations4, shifts in the original 
composition and diversity of terrestrial assemblages5, and changes in species’ threat status6. Without effective 
political action and integrated strategies, these negative trends will continue in the future7,8. The widespread 
decline in biodiversity contributes to the homogenization of the biosphere and the transgression of planetary 
boundaries for biosphere integrity. This transgression is strongly related to other planetary boundaries and may 
trigger irreversible changes that jeopardize human well-being9,10.

Agricultural production is among the leading drivers of global biodiversity loss, primarily due to the expan-
sion of croplands and grazing areas, as well as the intensification of farming practices to satisfy the increasing 
consumption demands of the growing and more affluent global population11,12. Agricultural activities occupy 
and convert natural habitats into intensively managed landscapes, reducing native biodiversity and disrupting 
essential ecosystem service flows13,14. Notably, increasing affluence has emerged as a significant distant driver 
of biodiversity loss, often geographically remote from the point of consumption15,16. Rising consumption has 
been identified as a dominant factor driving habitat conversion, climate change, and other indirect ecological 
pressures, as societies strive to meet the material demands of their increasingly affluent population17. Global 
telecouplings and displacements, which propagate hidden impacts and spillovers of product consumption on 
biodiversity, point to the vanishing connections between consumers and local ecosystems18. To address these 
hidden dynamics, biodiversity footprint analysis has emerged as a promising framework to account for the com-
plex ecological consequences of supply chains19–23. This approach captures both direct and indirect biodiversity 
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losses throughout international trade and supply chains, helping to assign demand-side responsibility remote 
biodiversity loss23. Biodiversity footprint accounting aims to link existing biodiversity datasets and models 
on biodiversity with “footprinting” methods, such as Environmentally extended multi-regional input-output 
(EE-MRIO) analysis and Life Cycle Assessment (LCA). However, obtaining consistent and high-resolution 
time series data on the contribution or footprint of economic sectors is critical to the effectiveness of these 
approaches. This is because long-term assessments require harmonized spatiotemporal datasets to accurately 
capture trends and support the development of evidence-based decision-making.

Consistent biodiversity footprint data and modeling approaches combine biodiversity metrics with multiple 
anthropogenic pressures, enabling the development of spatially explicit models of biodiversity response. The 
development of spatially explicit modeling approaches to biodiversity footprints have been enabled by exist-
ing land-use change datasets. Chaudhary et al.12 developed biodiversity characterization factors based on the 
countryside species-area relationship (SAR), which allowed for spatially explicit estimation of biodiversity loss 
from agriculture, pasture, and forest land use. Marques et al.15 applied this approach to quantify the biodiversity 
footprint of potential global bird species extinctions driven by changing land-use. Similarly, Wilting et al.24 
advanced the GLOBIO modeling framework utilizing the mean species abundance (MSA) as a function of mul-
tiple anthropogenic pressures. Boakes et al.25 further expanded the biodiversity footprint concept by assessing 
both production and consumption footprints of food-related commodities, focusing on land-driven and green-
house gas-driven species richness and rarity-weighted species richness.

Among the biodiversity metrics, Biodiversity Intactness Index (BII) stands out as a global leader in biodiver-
sity indicators, enabling the quantification of biodiversity loss which informs our understanding of biosphere 
planetary boundaries5,26. BII estimates the average abundance of organisms in a certain area relative to an undis-
turbed reference baseline to yield an improved spatiotemporal biodiversity indicator compared to many other 
indices26. The current version of BII integrates statistical models of overall organismal abundance and composi-
tional similarity to generate a picture of a minimally impacted (intact) assemblage27. Despite the limitations in 
its estimation and applications, BII is generally straightforward, practical, and sensitive to various driving factors 
and artificial interventions28,29. It has been widely applied in the assessment of biodiversity integrity in diverse 
contexts, including assessments of grasslands affected by fire and grazing in Africa and Amazonia30, biodiversity 
response to agricultural intensification31,32, interactions between private conservation and natural systems33, 
forest biodiversity monitoring27,34, soil biodiversity assessment35, and global biodiversity footprint analysis36,37. 
However, the BII model is based on the Land-Use Harmonization (LUH) framework, which classifies land cover 
by vegetation-based states such as primary and secondary vegetation rather than land use types observed in 
other land use, land cover datasets5,27,38. While this categorization facilitates the estimations of BII, original LUH 
datasets are derived from coarser-resolution models rather than direct observations, limiting their accuracy for 
finer-scale and national analyses. Although some efforts have been made to overcome this limitation, a globally 
consistent and spatially detailed dataset based on standardized methods remains essential for robust biodiver-
sity assessment across multiple scales27,39. Most current BII applications are constrained to single time points or 
relatively short-term intervals, largely due to the lack of reliable and consistent datasets.

This study therefore seeks to develop consistent datasets of harmonized land use and BII to derive the BII 
loss footprint associated with agricultural activities (i.e., crop and livestock production) between 2000 and 2020. 
We generate a consistent global time series of land use and BII by integrating statistical models with land use 
data and other auxiliary datasets. This work provides high-resolution harmonized land use (HHLU) maps to 
accompany land use fraction datasets, aligned with the LUH classification system. We ultimately allocate BII 
loss footprints to both crop and livestock production, synthesizing the footprints across major biomes, coun-
tries and territories, and production sectors annually. The dataset of agricultural biodiversity loss footprints is 
an initial step toward quantifying local biodiversity impacts of agricultural production at national and territo-
rial scales40,41. This information can serve as a critical foundation for integrating biodiversity footprint analysis 
into international trade, helping to reveal the hidden ecological costs embedded in global supply chains, clarity 
demand-side responsibility, and inform more sustainable production and consumption strategies.

Methods
This section outlines the required datasets (Table 1) and primary methodological steps used to generate globally 
consistent datasets of harmonized land use and Biodiversity Intactness Index (BII) maps. Land-use harmoniza-
tion integrates numerous data sources to produce temporally and spatially consistent datasets across the study 
period. BII maps are obtained though a combination of statistical modeling and spatial prediction techniques. 
Subsequently, allocation approaches are applied to attribute biodiversity loss footprints to specific crop and 
livestock production activities. An overview of the entire workflow is intuitively illustrated in Fig. 1, including 
all data inputs, modeling steps, and footprint allocation processes.

Datasets and processing procedures.  HILDA+ global land use change dataset.  Historic Land 
Dynamics Assessment (HILDA+, ~0.01°) is the primary land use dataset used to define habitat environments in 
biodiversity modeling. The dataset consistently covers a long-term period (1960–2019) at ~1 km spatial resolution 
annually. It is constructed based on a data-driven reconstruction approach to provide six land use/cover catego-
ries corresponding to the definitions of FAO (Food and Agriculture Organization), including forest, grassland, 
pasture, cropland, urban areas, and sparse/no vegetation (Fig. 2-A and Table S1). It harmonizes remote sensing, 
historical land use reconstruction, and statistics to generate authentic land use maps rather than other land cover 
data sources that are delineated solely from remote sensing imagery42. Land use reflects how humans utilize and 
manage land, making it more directly relevant than land cover for modeling biodiversity responses to land use 
changes and anthropogenic pressures. Moreover, HILDA+ is among the first to distinguish pastureland used for 
livestock grazing from general grassland areas, which is particularly important for our analyses of biodiversity 
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loss associated with livestock production. The relatively fine resolution of HILDA+ also allows a more precise 
detection of changes in local land use trends and more accurate assessments of how these changes are connected 
to biodiversity loss and associated impacts43.

MODIS land cover product.  MCD12Q1 version 6.1 is an annual land cover type data product derived from 
MODIS (Moderate Resolution Imaging Spectroradiometer) sensors on board the AQUA and TERRA satellites. 
It uses a supervised decision tree classification to generate global land cover maps at approximately 500-meter 
spatial resolution, covering the years 2001 to 2023. It provides land cover data under five different classification 
schemes, such as the International Geosphere-Biosphere Programme (IGBP), University of Maryland (UMD), 
leaf area index, BIOME-biogeochemical Cycles (BGC) and plant functional types44. We derived the layer of land 
cover from the University of Maryland (UMD) classification scheme including sixteen (16) land cover categories 
(Table S2) to complement HILDA + and other land use data sources, helping to refine broad land use categories 
and adjust for potential misclassifications.

Other auxiliary data on land use.  In addition to HILDA+ and MCD12Q1, we incorporated multiple land 
use-related datasets to enhance the accuracy of land use maps and to better translate them into representations 
of habitats. These datasets include human pasture layer and cultivated grassland data from the Global Pasture 
Watch (GPW) dataset, which were used to correct and refine the pasture class in the HILDA+ dataset by remov-
ing natural grassland areas45,46. Although the generic forest class from HILDA+ can be subdivided into different 
forest types, these distinctions are mainly based on vegetation characteristics (i.e., evergreen versus deciduous) 
rather than on forest management regimes that are more relevant for biodiversity assessment. Incorporating 
forest management data enhances differentiation to distinguish plantation forests, oil palm plantations, and 
agroforestry systems from natural and semi-natural regenerating forests47.

To convert land use maps into habitat-focused land use maps, we further incorporated the land use maps 
with two critical datasets of intact forest landscape and terrestrial human footprint data. Intact forest land-
scape (IFL) data was adopted to identify primary forest landscape among generic forest pixels, as IFL represents 
unfragmented forest patches of at least 500 m2 that are free from significant human disturbance48. In addition, 
human footprint data combines eight human pressure variables including built environment, population, night-
time lights, crop and pasturelands, roads and railways, and navigable waterways to capture cumulative human 
pressures on ecosystems and natural landscapes. It presents human impacts at different levels ranging from near 
wilderness/intactness to high modification, using a scale from 0 (intact) to 50 (most modified)49,50. Therefore, 
human footprint data allow us to classify habitat landscapes based on the intensity of human modification. Land 
use with wilderness and intact status is categorized as minimally used primary and primary vegetation habitats, 
while more heavily modified areas are classified as secondary vegetation and other highly modified landscapes.

PREDICTS Biodiversity database.  PREDICTS (Projecting Responses of Ecological Diversity in Changing 
Terrestrial Systems) is a global biodiversity dataset collected from individual studies worldwide. It describes 
information at site-level species abundance for diverse taxa (i.e., plants, fungi, invertebrates, and vertebrates), 
habitat characteristics, and supplementary information 52. It describes the site-level information. The early ver-
sion (v1.1) released in 2016 included 480 studies across 94 countries from 1984 to 201351. It recorded over 
3,278,056 measurements from 26,194 sampling locations with 47,089 species. The later version (v2022) adds 
about 1,040,752 measurements from 115 studies at 9,544 sampling locations in 46 countries (10,635 species)52. 
This update expands the data coverage to 101 countries worldwide up to the year 2018, with most studies span-
ning 2000 to 2010. The current data version is distributed across a wide range of landscapes and land-use habi-
tats, providing broad ecological and geographical representation (Figure S1).

The two versions were combined and preprocessed using a series of data quality control steps, such as data 
filtering, data transformation, and estimation. More explicitly, the dominant land use on each site was refined to 

Source Category Years Data type Pixel size

HILDA+ land use42 Land use 2000–2019 Raster image 1 km

MODIS MCD12Q1 land cover44 Land use 2001–2020 Raster image 500 m

Global human pasture45 Land use 2000 Raster image ~1 km

Global Pasture Watch (GPW)46 Land use 2000–2022 Raster image 30 m

Forest Management Data47 Land use 2015 Raster image 100 m

Intact forests landscapes (IFL)48 Land use 2000, 2013, 2016, 2020 Shapefile, polygons —

Global terrestrial human footprint49 Human impact 2000–2022 Raster image 1 km

Population density54 Human impact 2000–2020 Raster image ~1 km

ESRI global road network Human impact — Shapefile, lines —

Accessibility to Cities57 Human impact 2015 Raster image ~1 km

PREDICTS database51,52,76 Biodiversity 1984–2018 Data Records —

Spatial Production Allocation Model (SPAM)58 Agricultural production 2005, 2010, 2020 Raster image ~10 km

Gridded Livestock of the World (GLW)62 Agricultural production 2010, 2015, 2020 Raster image ~10 km

Table 1.  Datasets used to develop biodiversity intactness maps and biodiversity footprints.
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the same classification scheme as our harmonized land use data, while a site with unclear (“cannot decide”) land 
use was eliminated from further analyses. Biodiversity metrics were retrieved from the PREDICTS database to 
estimate BII including the total abundance of organisms regardless of taxonomic groups at each location and the 
compositional similarity of each location relative to other sites. Sampling efforts may be different across studies 
and sites. Therefore, total abundance values were normalized by sampling efforts and rescaled to a 0–1 range to 
make them comparable across studies and sites27. This range reflects the intactness of species abundance com-
pared to a natural baseline set at 100%. Compositional similarity of a site location to human impacts reflects 
the community structure of the considered site in terms of occurrence and quantity of species compared to the 
baseline sites of primary minimal-used habitats using a balanced Bray-Curtis index26,27,39. Subsequently, both the 
rescaled total abundance and Bray-Curtis index datasets need to pass data quality checks to eliminate outliers 
before being used for biodiversity modeling.

Fig. 1  Overview of the methodological framework used to generate biodiversity intactness maps and 
biodiversity loss footprints associated with agricultural production.
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Data on human-induced impacts.  Beyond land-use fraction derived from land-use maps, a range of other 
anthropogenic factors also play a significant role in regulating biodiversity intactness. Human population den-
sity is widely considered one of the primary agents that significantly correlates with biodiversity loss, as popula-
tion growth and human interventions lead to resource exploitation, habitat disturbance and fragmentation, and 
pollution53. We acquired population density data from WorldPop (~1 km resolution) for each year from 2000 to 
2020, which applies a random forest algorithm based on census and land cover data to estimate and distribute 
population on grid cells54.

Transportation and traffic projects fragment habitats and ecological systems55. Obtaining a balanced global 
road network for sustained time period is challenging as some countries have detailed data availability while 
others have relatively limited data sources56. A dense road network can cause overestimation and vice versa, 
while currently available data frequently lacks hierarchical information to eliminate local roads and pathways. 
Esri World Roads provides relatively homogeneous data, providing details of highways and major roads suitable 
for human impact analysis. The vector map was transformed into raster data by estimating the proximity to 
roads using Euclidean distance function in ArcGIS Pro.

Another factor is accessibility, represented by travel time to nearby urban centers using various modes of 
transportation while considering land cover and topography57. Natural characteristics and topographical pat-
terns have to some extent been proven to control ecological dynamics55. For instance, flat plain ecosystems 
are often more disturbed due to high population density and agricultural and industrial activities. Therefore, 
accessibility data is relevant when considering both natural and anthropogenic drivers of biodiversity intactness. 
Since there is currently no annual data on roads and accessibility, this data was treated as time-invariant driver.

Crop and livestock distribution datasets.  Spatial distribution datasets for crops and livestock provide essential 
information for attributing biodiversity loss to specific crop types and livestock categories. BII loss was attrib-
uted to crop and livestock groups based on their proportion of total crop/livestock at a given location (or grid 
cell). This study employed SPAM (Spatial Production Allocation Model) to represent crop distributions and 
GLW (Gridded Livestock of the World) to represent livestock distribution.

SPAM is a global crop distribution dataset used to attribute the impact of individual crops on biodiversity 
loss. SPAM applies both spatial and non-spatial inputs to estimate the spatial distribution of the physical area 
based on land suitability criteria for each specific crop58. Currently, there are three available SPAM datasets from 
2005, 2010, and 2020 with relatively uniform crop systems (i.e., 42 crop types in 2005/2010 and 46 crop types in 
2020) and spatial resolution (~10 km)59–61. However, our annual estimates of biodiversity loss footprint require 
continuous time series data rather than discrete snapshots to enable a robust temporal analysis. Therefore, we 
extended the SPAM framework by incorporating SPAM as reference data and FAOSTAT statistics to gener-
ate annual global SPAM crop distribution maps for 2000–2020, using suitability probability while ensuring 
national-level consistency and pixel-scale constraints (see Supplementary Information 1 for full method).

GLW is a spatial dataset of the global distribution of eight major livestock categories (i.e., buffalo, cattle, 
chicken, duck, horse, goat, pig, and sheep)62. The current versions cover 2010, 2015, and 2020 at a spatial res-
olution of approximately ~10 km. Our study considered five of the eight livestock types estimated from the 
dasymetric allocation (DA) method, including buffalo, cattle, horses, goats, and sheep. These specific animals 
were chosen because their production systems are directly associated with pasture and grazing land use. Other 
livestock types are predominantly raised in confined or mixed systems, and although their production may 
significantly impact biodiversity through feed production and related pollution (e.g., nutrient runoff, anomia 
emission, and waste-related contaminants), they do not directly contribute to pasture conversion. Therefore, 
excluding them ensures that our analysis focuses solely on the direct impacts of livestock production on land 
use and biodiversity rather than indirect effects. Annual datasets for each livestock type were also generated to 
support time series analysis. We applied a spatial allocation framework that corresponds to the SPAM crops 

Fig. 2  Example of land use harmonization processes in Africa. (A) original HILDA+ land use includes six 
broad classes, (B) combined land use/cover with MCD12Q1 and other land use datasets to refine vegetation 
types, (C) output of harmonized land use map with habitat states for biodiversity integrity assessment.
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allocation model based on data already available from GLW and FAOSTAT to produce each yearly GLW raster 
layer. This approach assumes that areas with higher livestock density indicate more suitable environments for 
their presence, allowing for a spatially explicit estimation of livestock distribution over time. In livestock pro-
duction, the production of meat and dairy production may differently affect the environment and biodiversity. 
Some multi-regional input/output datasets (e.g., EXIOBASE) distinguish between these two categories in their 
estimations. To align with this distinction and enhance the granularity of our analysis, we further disaggre-
gated each livestock type (except horses) into meat and dairy livestock distribution maps (see Supplementary 
Information 2 for full method).

For each year, a shared proportion of each crop or livestock type at a given location was calculated as its share 
within the total area or total number of livestock heads at that pixel (Eq. 1). By this definition, the sum of shared 
proportions across all crops or livestock types at any given pixel equals one (1).

Prop
a

A (1)
i j

i j

j
,

,=

where Propi,j is the shared proportion of crop or livestock i at pixel j, ai,j is the area for crops or head count for 
livestock i at pixel j, and Aj is the total crop area or livestock head count at pixel j.

Land use harmonization.  Land use is a critical driver of environmental changes and biodiversity loss, 
reflecting human interventions that modifies and disrupts natural ecosystems for production, agricultural culti-
vation, and infrastructure purposes5,63. However, biodiversity integrity is typically assessed using a classification 
system that emphasizes habitat states and management regimes rather than conventional land use and land cover 
categories. This conceptual framework was conceptualized by Land-Use Harmonization (LUH), which integrates 
historical and future projections of land-use to generate land-use fraction maps from 850 to 210038. However, a 
relatively coarse resolution (~0.25 arc-degree), which is challenging for finer and small-scale biodiversity assess-
ments attempting to capture local trends adequately43. Therefore, we combined multiple available land use, land 
cover and auxiliary datasets to generate high-resolution harmonized land use datasets (HHLU), with a classi-
fication system aligned to LUH categories, at a global scale for biodiversity integrity assessment (Table 2). An 
overview of the methodological workflow is provided in Figure S3 with detailed explanations presented below.

A data quality assessment comparing HILDA+ data with other available land use datasets revealed nota-
ble inconsistencies and misclassifications within the HILDA+ data. For example, forested areas in Taiwan and 
natural grassland areas in the northern latitudes were misclassified as grassland and pasture areas in HILDA+, 
respectively (Figure S2). These discrepancies highlight the need to integrate additional datasets to reduce such 
uncertainties and improve the classification accuracy of HILDA+. To address this, we integrated HILDA+ with 
land cover layer from the University of Maryland’s classification scheme from the MCD12Q1 product (land 
cover layer 2, ~500 m) to adjust and specify forest class from HILDA+ at a finer resolution (Fig. 2-B).

Prior to the adjustment and harmonization processes, all data layers were reprojected and resampled to 
align with MCD12Q1 data (WGS84 lat/lon geographic coordinates, ~500 meters), ensuring consistency and 
preserving spatial detail from finer-resolution layers such as MCD12Q1 land cover, forest management, and 
global pasture watch datasets. For continuous value data, the average value will be taken, and for discrete classes, 
the most frequent value (mode) or majority-pixel will be used in the upscaling process. During the downscaling 
process, resampling was conducted to ensure the retention of the values of finer component pixels within each 
coarser pixel. Conversely, during the upscaling process, the average value was considered for continuous data, 
while the mode (i.e., that most frequently occurring within a targeted coarse pixel) was applied for categorical 
(discrete) data to preserve the most dominant class.

Following these procedures, cultivated grassland was extracted from the GPW dataset and resampled to 
match the projection and resolution of HILDA+ data. These annual cultivated grassland layers and the human 
pasture layer were then adopted to adjust the pasture class in HILDA+ for each year by removing areas classified 
as pasture but lying outside the limits of cultivated grassland and human pasture layers45. Specifically, pasture 
areas in HILDA+ that fell outside these boundaries were reclassified as natural grassland rather than pasture 
used for grazing purposes. The adjusted HILDA+ layers were resampled to 500 meters to preserve the spatial 

Land use category Definition and Description

Primary vegetation
All vegetation and other landscapes with no or low human impact and disturbance or clearing, including natural and 
natural disturbance vegetation (e.g., natural forests, shrublands, grasslands, savannas, scrubs, and tundra), desert, 
barren, rock and ice.

Secondary vegetation
Regrowing/regenerating vegetation landscapes and managed forests, implying medium human intervention 
following disturbance or clearing (e.g., logging and shifting cultivation), such as naturally regenerated forests and 
vegetation landscapes, production forests, planted forests, plantation forests, urban green spaces, and urban forests.

Pasture Managed pasture, grassland, and meadows (covered mainly by herbaceous plants) used for livestock grazing and hay 
production, which includes steppes, savannah, and mosaic landscapes.

Agroforestry Woody crops including tree/shrub crops that do not belong to typical herbaceous croplands. It includes fruit/
orchards and plantations (e.g., oil palm, coconut, and coffee plantations).

Cropland Herbaceous crops, mosaic crops, and paddy fields, such as annual grain crops (e.g., wheat, rice, maize), and 
vegetables.

Urban areas Artificial surfaces, including urban and built-up areas, roads, industrial sites, and urban infrastructures and utilities.

Table 2.  Definition and description of harmonized land use.
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detail after harmonization with the MODIS land use layers. While most land use classes and information were 
directly derived from HILDA+ and retained their original classes (e.g., cropland, urban, and barren land), the 
forest class was further integrated with MCD12Q1 to correct possible misclassification within the forest category 
and specify forest types (Fig. 2-B). Both HILDA+ and MCD12Q1 datasets only capture forest classes but do not 
distinguish between different forest management regimes. However, different forest management types (e.g., 
wild forest, production forest, agroforestry, and orchards) have divergent impacts on biodiversity. To capture 
these differences, the refined forest classes were further subdivided into various forest classes and managed for-
ests (agroforestry) by integrating global management forest data47. The combined land use is relatively detailed, 
reflecting critical land use and land cover categories (Fig. 2-B).

Subsequently, a second procedure was applied to the combined land use layers to delineate vegetation and 
habitat states such as primary and secondary vegetation. From a biodiversity intactness perspective, land use and 
management regimes are more critical than land use categories alone, as they indicate land use intensity rather 
than just land use purposes. Therefore, the combined land use data was reclassified at a second level, separating 
forest and grassland into primary vegetation (naturally regenerating vegetation without human impacts) and 
secondary vegetation (naturally regenerating vegetation with human activities, e.g., logging and clear cuts). 
Two datasets were utilized to distinguish these habitat states, including intact forest landscapes (https://intact-
forests.org) and annual terrestrial human footprint48,49. Areas identified as intact forest landscapes were directly 
assigned to the primary vegetation class. Forests and other vegetation in wilderness and intact states in the ter-
restrial human footprint were also assigned as primary vegetation, while the remaining vegetation was classified 
as secondary. Ultimately, we produced annual harmonized land use (level 2, HHLU) at 500-meter resolution 
encompassing six land use types (i.e., primary vegetation, secondary vegetation, cropland, pasture, agroforestry, 
and urban areas) (Table 2 and Fig. 2-C).

The level 2 HHLU data was then aggregated to generate land use fraction maps at a coarser ~2.5 km reso-
lution. This was done by applying a 5×5 pixel moving window, where for each window, the number of pixels 
belonging to each land use category was counted and then divided by the total number of pixels within this 
window (25 pixels). The resulting land-use fraction values represent the proportional coverage of each land-use 
type within a larger pixel. This process was repeated across the entire dataset to produce continuous raster maps 
where the fraction of all land use categories sums to 1, which can capture mixed land uses at a coarser scale for 
biodiversity modeling.

Biodiversity modeling.  Linear mixed-effect (LMM) models were employed to characterize species diversity 
by comparing different sampling methods between distinguishing studies and sampling blocks—with studies and 
sampling blocks as random effects26,27,39. Two LMMs were constructed to represent biodiversity components of 
BII through diversity abundance and compositional similarity. These models were constructed using estimated 
parameters from the PREDICTS database, along with land use and human impact variables drawn from the data 
pool. Prior to biodiversity modeling, land use fractions for each land use category and human impact variables 
were extracted at sampling block locations provided in the PREDICTS database (Figure S1). Rescaled abundance, 
compositional similarity (Bray-Curtis index), land use fractions, and human impact variables were first trans-
formed to approximate normality prior to applying linear-mixed models. Rescaled abundance and human impact 
variables were transformed using the natural logarithm transformation with added constant [ln(x + 1)] to allow the 
inclusion of zero in the analysis. Compositional similarity was transformed using the logit transformation function 
from the car R-library, with a small adjustment of 0.01 to constrain values within the open interval [0, 1]64.

The transformed abundance and compositional similarity were used as dependent variables in two sep-
arate linear-mixed effect models, with land use fractions and all other human impact variables included as 
independent predictors. Initially, a broader set of predictors was considered, including nighttime light (NTL) 
and proximity to cities. However, only the human impact variables listed in the data used section made signif-
icant contributions to at least one of the LMM models. The LMM models were fitted using a maximum like-
lihood estimator, implemented via the lme4 R-library65. The land use fraction from all land use categories and 
human impact variables were considered as fixed effects. Random effects were specified across sampling blocks 
to account for spatial and study-level variability. Variable selection was done by stepwise elimination using 
the lmerTest R-library66. The final models were evaluated based on two indicators of Variance Inflation Factor 
(VIF) and the coefficient of determination (R2). VIF assists in controlling free multicollinearity, with all predic-
tors not exceeding VIF < 4.0, while R2 reveals the power of fitted models. The fitted models of Abundance and 
Compositional Similarity achieved R2 of 0.521 and 0.774, respectively. The selected predictors and their coeffi-
cients (p < 0.001) for the transformed abundance and compositional similarity models are presented in Table 3.

Spatial prediction of BII maps.  The fitted global models were applied to generate annual spatial BII maps 
from 2000 to 2020. These models were used to predict spatially the two component maps of transformed abun-
dance and compositional similarity. This required the raster layers of the predictors (except for land use fractions) 
to be transformed using a natural logarithm, consistent with the transformations applied to point-based data. 
Human impact raster layers were upscaled to match the land use fraction layers using average aggregation. Land 
use fractions and population layers were treated as dynamic variables for individual years, while proximity to road 
and travel time were considered static variables due to the unavailability of annual data.

The intermediate maps of transformed abundance and compositional similarity were subsequently 
back-transformed to original components using the inverse of natural logarithm and logit functions, respec-
tively. Resulting maps of abundance (Ab) and compositional similarity (Cs) were normalized to reduce model 
uncertainty and rescale to a standard 0–1 range, ensuring that maximum values correspond to baseline intact 
habitats with minimal human disturbance. Since the observation period (2000–2020) covers only the last two 
decades—well after the Industrial Revolution, which marked the start of rapid habitat destruction—and because 
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pre-industrial reference values are unavailable, relative reference values were statistically derived using the 90th 
percentile of Ab and Cs from the 2000 maps, rather than relying on any pristine assumption or site-level data 
from PREDICTS database. The 90th was chosen over the maximum to minimize the influence of extreme out-
liers and sampling bias, thereby providing a more robust and representative estimate of high biodiversity con-
ditions across global landscapes. These reference values were then used to rescale annual Ab and Cs maps by 
dividing each pixel in the annual maps by the corresponding reference values of Ab and Cs, respectively. The 
final BII maps were obtained by multiplying the normalized annual Ab and Cs layers, with any pixel values 
exceeding one (1) capped at 1, representing fully intact habitat.

Biodiversity loss allocation to agricultural activities.  Biodiversity loss allocation aimed to quantify 
biodiversity loss footprints, represented by BII loss, caused by agricultural production in crop and livestock sys-
tems67. We integrated spatial data on BII loss with spatial distributions of agricultural production (i.e., time series 
data of SPAM and GLW). The original BII reflects the remaining biodiversity intactness under land use changes 
and anthropogenic pressures. Therefore, biodiversity loss (BIIloss) was inversely defined as the proportion of bio-
diversity that has been degraded due to any anthropogenic impacts, calculated as the complement of BII (Eq. 2).

At any given location, BII loss resulted from multiple pressures as presented in described models such as 
land use, infrastructure development, and other human interventions. This allows a complex picture to emerge. 
For example, BII loss observed in a cropland pixel may result not only from crop cultivation itself but also from 
adjacent influences such as human settlement agglomeration and infrastructure development. Fully attributing 
this BII loss solely to cropland may therefore lead to oversimplification and an overestimation of cropland’s 
contribution. However, the interpretation of overall biodiverse loss based on factor contributions in the original 
multiplicative formulation of BII, where BII is derived by multiplying Ab and Cs, is not straightforward. Land 
use and human pressures can have nonlinear effects on BII and may influence both components. Therefore, an 
additional step was implemented to decompose and quantify the contribution of individual land use categories 
to the overall BII loss (Supplementary Information 3). The decomposition revealed that croplands, agrofor-
estry systems (including fruits and orchards), and pasturelands (associated with livestock grazing) contributed 
approximately 21.02%, 15.85%, and 16.19% of the total BII loss, respectively. These values are referred to as con-
tribution factors (CF) for each land use category in relation to total BII loss. More specifically, BII loss attributed 
to a particular land use category (lu) was estimated as a function of total BII loss, the contribution factor of that 
land use, and its corresponding land use fraction derived from the HHLU dataset (BIIlosss,lu, Eq. 3).

Subsequently, the relative biodiversity loss was quantified as the BII loss footprint, representing the approx-
imate area that experienced BII loss (km2, Eq. 4). In other words, for example, if a pixel i with a total area of ai 
experienced a BII loss of 20%, the corresponding BII loss footprint would be approximately 20% of that pixel’s 
total area.

In essence, a single pixel in the BII loss layer (approximately 625 hectares) may encompass a mix of differ-
ent crop and livestock production systems. To allocate biodiversity loss more precisely, the BII loss footprint 
associated with each land use type was further disaggregated to estimate the specific footprints attributable 
to individual crops and livestock items. It should be noted that the BII loss footprint attributed to cropland 
and agroforestry corresponds to crop production, whereas the loss associated with pastureland is allocated to 
livestock systems. The land use-level BII loss was further apportioned to specific product items within the crop, 
agroforestry, and livestock sectors by multiplying it with their respective proportional shares in SPAM and GLW 
data (Eq. 5)67,68. This allows us to estimate the individual contributions of each product type to the total BII loss 
footprint (Figure S4).

= −BII BII(1 ) (2)loss

Predictors Coefficient Standard Error Sig. level VIF

Abundance model

  (Intercept) 3.252E–01 1.164E–02  < 2E–16***

  Primary vegetation 3.622E–02 5.493E–03 4.41E–11*** 1.033

  Croplands –2.534E–02 4.928E–03 2.77E–07*** 1.041

  Urban lands –6.276E–02 7.838E–03 1.25E–15*** 1.074

  Log-Proximity to roads –3.859E–03 1.199E–03 0.00129** 1.068

Compositional Similarity model

  (Intercept) 5.020E–01 1.729E–01 0.00379**

  Log-Geographical distance –7.383E-02 1.018E–03  < 2E–16*** 1.001

  Primary vegetation 5.336E–01 6.378E–02  < 2E–16*** 1.189

  Urban lands –1.086E+00 1.583E–01 7.37E–12*** 1.499

  Log-Population density –8.599E–02 1.541E–02 2.51E–08*** 1.610

  Log-Travel time –1.188E–01 2.514E–02 2.35E–06*** 1.851

Table 3.  Predictors and corresponding coefficients and VIF values yielded from linear mixed-effect models 
for transformed abundance and compositional similarity. Significance level: *** is p < 0.001; ** p < 0.01; * 
p < 0.05. Log is natural logarithm transformation. 
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where BIIloss is the total biodiversity intactness loss; BIIloss,lu is the portion of biodiversity intactness loss attribut-
able to land use lu; CFlu is the contribution factor of land use lu to total BII loss; Flu is the land use fraction of land 
use lu [0:1]; FPi

BIIloss lu,  (km2) is the BII loss footprint induced by lu at pixel i; ai is the area of pixel i (~6.25 km2); 
FPxi

BIIloss (km2) is the BII loss footprint attributable to crop, agroforestry, or livestock x at pixel i; and Px,lu(i) is the 
shared proportion of crop, agroforestry, or livestock x within land use lu at pixel i.

The spatial output maps of BII loss footprints represent the area of BII loss attributed to individual crops, 
agroforestry, and livestock commodity groups aligned with SPAM and GLW broader categories. Global inven-
tories and multi-regional input/output (MRIO) databases typically capture economic activities and environ-
mental pressures at the national level. To ensure consistency and further enhance the footprint analysis, we 
quantified total BII loss footprints for each agricultural item group at the national level in an annual time series. 
Additionally, within each country, these total footprints were specified for each corresponding ecoregion. 
Livestock systems had been disaggregated into dairy and meat production systems at an earlier stage of GLW 
time series generation. The approximately forty crop and agroforestry item groups in the SPAM dataset are 
still relatively too broad to capture the granularity of crop-level footprints, and we aimed to provide data at a 
more detailed and crop-specific level. To enhance granularity and ensure compatibility with other datasets such 
as FAOSTAT, we further disaggregated the national footprints at the item group level into specific FAOSTAT 
commodity items based on their relative production shares. In particular, production data of all crop items 
corresponding to SPAM groups (Table S3) was acquired from the FAOSTAT database and used to calculate each 
item’s share within its respective SPAM group. If a group contains only one crop item, it is assigned to the full 
proportion. The BII loss footprint attributed to each specific crop item was then obtained by multiplying the 
total footprint of the general SPAM group by the item’s share. The final footprint dataset provides ecoregional 
and national-level footprints for 154 crop items and 9 livestock categories in dairy and meat production systems.

Data Records
The dataset is organized into four main folders on the Figshare repository (https://doi.org/10.6084/
m9.figshare.2830344269, Fig. 3), each containing annual global spatial data and tabular information of the 
BII loss footprint attributable to each crop and livestock commodity. The spatial datasets comprise (1) 
high-resolution harmonized land use (HHLU), (2) land use factions, and (3) BII maps from 2000 to 2020, all 
provided in GeoTIFF raster format (*.tif) using the “EPSG:4326” (WGS84) coordinate reference system (CRS). 
The spatial resolution of HHLU is ~0.004 arc-degrees (approximately 500 meters at the Equator), while both 
land use fractions and BII maps have a resolution of ~0.02 arc-degrees (~2.5 km at the Equator). Each map folder 
also includes a “readme” file detailing file name structure and value range. In addition, a map style (*.qml) file is 
provided in each folder to supply map styling for visualization in QGIS.

The HHLU folder includes one GeoTIFF file (*.tif) per year, with discrete values from 1 to 7 representing 
distinct land use and habitat states. Values 1 and 2 correspond to primary minimal-used vegetation and primary 
vegetation, respectively, which were combined into a single primary vegetation class for BII modeling (Fig. 4). 
Secondary vegetation, cropland, urban lands, pasture, and agroforestry are coded as 3, 4, 5, 6, and 7, respectively.

The land-use fractions are organized into six separate folders, each corresponding to one land-use category. Each 
folder contains one GeoTIFF file (*.tif) per year representing the fractional coverage of one land use category as 
described in the section in the text on land-use harmonization. Pixel values range from 0 to 1, indicating the coverage 
proportion of each land use within that pixel (Fig. 5), with the sum of all six fractions at any location totaling 1.0.

The BII dataset provided in a separate folder contains one GeoTIFF file (*.tif) per year, representing the 
remaining biodiversity intactness globally, which reflects the remaining biodiversity intactness across the world. 
BII values range from 0 to 1. A higher BII value indicates a higher level of biodiversity integrity (Fig. 6).

The dataset of BII loss footprints for crops and livestock categories is given in tabular form (Comma-separated 
values, CSV format, *.csv), which is stored in a separate folder, detailing quantitative statistics on the spatial 
imprint of each crop and livestock commodity across biomes and countries/territories annually from 2000 to 
2020. The footprint dataset includes fourteen columns (Table 4). Each row represents the area of BII loss foot-
print (km2) associated with a specific product in a given year, country/territory, UN region, continent, and 
biome. This data captures the BII loss footprint of 154 crops aligned with FAO categories, and five livestock 
categories covering both meat and dairy production systems, resulting in a total of nine livestock commodities 
(with horses assumed only in meat production).

Technical Validation
Technical validation comprises four main tasks: (1) assessing data consistency of HHLU maps by comparison 
with currently available land use maps with the same classification system; (2) verifying the BII map outputs 
against multiple independent datasets; (3) validating spatial agreement between the extended SPAM and GLW 
maps and reference data; and (4) conducting uncertainty analyses of land use and land use fractions alongside 
sensitivity analysis of the biodiversity models.
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Validation of land use and land-use fractions.  Land use data for biodiversity integrity assessments 
are defined using the specific classification system of the LUH dataset that describes habitat states and potential 
human disturbance through land use types such as primary and secondary vegetation habitats. Acquiring com-
parable data for cross-comparison poses a challenge. We addressed this by validating the generated datasets by 
using multiple independent datasets. First, although the land use types in the HHLU are closely aligned with the 
LUH system, the cropland and pastureland categories are best aligned with the FAO land use system. Therefore, 
we used national-level cropland and pastureland area (i.e., permanent meadows and pastures) from FAOSTAT 
over the observed period as a reference for comparing with the corresponding categories in the HHLU dataset. It 
should be noted that cropland in the HHLU dataset for the validations includes both cropland and agroforestry 
in order to maintain consistency with other datasets. The results indicate that the HHLU dataset reliably captures 
cropland and pastureland areas in most countries and territories, with correlation coefficients of 0.962 (95% CI: 
0.950–0.971) for cropland and 0.949 (95% CI 0.932–0.962) for pastureland (Figure S5).

Subsequently, all land use classes were evaluated using accuracy assessment procedures based on the down-
scaled LUH data for 200570 (Supplementary Information 4). The accuracy assessment employed a bootstrap 
method to estimate accuracy uncertainty and confidence intervals. The HHLU map, generated in accordance 
with the LUH framework, demonstrated relatively high reliability, with an overall accuracy of approximately 
78.7% (95% CI: 78.3–79.1%) and a kappa coefficient of 0.724 (95% CI: 0.718–0.729). The classification perfor-
mance for each land use class was further assessed through user’s accuracy. Primary vegetation and urban land 
exhibited the highest user’s accuracy among the land use categories, with confidence intervals of approximately 
87.2–88.5% and 81.7–84.9%, respectively. Other land use types also achieved relatively high classification perfor-
mance: secondary vegetation (73.7–75.5%), cropland (71.3–73.2%), and pasture (77.3–79.4%).

In addition to assessing the accuracy of land use classes, this process further validated the land use fraction 
maps derived from HHLU to ensure their spatial alignment with the downscaled LUH data for 200570. For 
make this comparison, we obtained five layers from the downscaled LUH data including primary and second-
ary vegetation, cropland, pasture, and urban land. Ice and desert regions were excluded from all comparative 
analyses. First, the downscaled LUH layers were resampled to match the spatial resolution of the HHLU land 
use fractions. These layers were then compared at both the pixel and country levels using Pearson correlation to 
verify their consistency at different levels. Specifically, all pixels were extracted and compared for the pixel-level 
analysis, while national averages of land use fractions were used for the country-level evaluation. Since the 
HHLU integrates multiple data sources with varying spatial resolutions, spatial uncertainty may be propagated 
from the input layers into the resulting land use fractions. To account for this, we also tested correlations across 
different spatial aggregation levels. At the original spatial resolution (~2.5 km), the overall consistency between 
HHLU and the downscaled LUH was moderate, with a correlation coefficient of approximately 0.729 at the 
pixel-based level for all classes (Fig. 7). This consistency improved significantly at a coarser spatial scale of 
~10 km (r = 0.784), but no further increase was observed at ~20 km resolution. Among individual classes at 
the pixel level, cropland showed the highest spatial agreement (r = 0.828), while other classes also exhibited 

Fig. 3  Folder structure of the data repository. XXXX is the four letters of land use type (e.g., prim), YYYY is the 
observation year (e.g., 2020), and vv is the data version.
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relatively high agreements (approximately r = 0.8) under the ~10 km aggregation. At the country-level, where 
aggregation effects were minimized, the correlation peaked, with an overall coefficient of approximately 0.751 
(95% CI: 0.720–0.780) (Figure S6). Urban land, cropland, and pasture were the most consistent classes, with 
correlation coefficients of 0.878 (95% CI: 0.837–0.909), 0.871 (95% CI: 0.828–0.903), and 0.845 (95% CI: 0.795–
0.884), respectively.

Secondary vegetation showed with relatively low spatial agreement in both scale analyses, with correlation 
coefficients ranging 0.331–0.420. This observed inconsistency is likely due to differences in data sources and 
data generation approaches between LUH and HHLU. The original LUH modeled and generated soft land use 
fractions, while the maps in this study derived from historical datasets, leading to inconsistency within even the 
same land use class (Figure S7). For example, the lowest consistency was observed in African countries, where 
forest management and intact forest landscape indicated large areas of primary forest, while the LUH dataset 
tended to classify these regions as secondary vegetation (Figure S7). Pixel values in the HHLU-derived dataset 
often reach the maximum value within aggregation windows where land use is homogeneous, a scenario that 
rarely occurs in the LUH dataset. This difference arises because our land use fractions were generated from 
land use-based estimates rather than model-derived fractions, which may amplify apparent inconsistencies. 
Although our land use fractions showed relatively low consistency for secondary vegetation with the origi-
nal LUH, they generally offer a more historically grounded and observation-based representation of land use 

Fig. 4  Harmonized land use map in 2020 and fragmented zoom-in examples in (A) Northeast America,  
(B) Amazon, (C) Mekong Delta, (D) Eastern Australia, (E) Northeast China, (F) Nile Delta in Egypt,  
(G) Southern Africa, and (H) Western Europe, depict dominant land use categories globally.
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patterns for biodiversity integrity assessments that require accurate historical baselines rather than relying solely 
on model-derived estimates.

Given the classification performance of the HHLU and aggregation of land use in generating land use frac-
tion maps, it is essential to estimate the associated uncertainty to inform users of potential limitations and con-
fidence in these datasets. Therefore, an uncertainty assessment for land use fractions to evaluate the robustness 
of HHLU dataset across classes for biodiversity modeling as also conducted. The overall uncertainty of land use 
fractions arises from two sources: uncertainty in classification performance and uncertainty in aggregation to 
estimate fractions resulting from the mixing or heterogeneity of land use within an aggregation window. The 
first was derived from an accuracy assessment, while the latter was estimated by the bootstrap method. More 
explicitly, we implemented a block bootstrap approach (5×5 pixels) over each land use raster layer of the HHLU. 
For each aggregation window, the pixel values were repeatedly resampled with replacement and the fraction 
of the target land use type was calculated across n = 50 bootstrap iterations. The mean proportion provided 
the estimated land use fraction, while the standard deviation across iterations served as uncertainty estimates 
for each aggregated block. To estimate overall uncertainty, we combined the classification uncertainty and the 
aggregation uncertainty arising from land use heterogeneity using the following equation:

Uncertainty se se (6)lui
2 22= +

where selui is uncertainty from classification, and se is uncertainty from the aggregation process.
The estimated uncertainty of land use fractions varied across land use types (Fig. 8). Primary vegetation and 

urban land exhibited relatively high uncertainties, approximately 8% (95% CI: 4.1–12.0% for primary vegetation; 
1.9–17.0% for urban land), indicating moderate spatial variability. Secondary vegetation showed a comparable 
mean uncertainty of 6.8%, but its confidence interval was much wider (95% CI: 1.8–21.5%). In contrast, crop-
land and pasture demonstrated lower average uncertainties of 4.5% and 5.8%, respectively, though both had 
wide confidence intervals, indicating spatial variability in data reliability across regions. These uncertainties 
imply that cropland and pasture were generally well-represented in the HHLU datasets, while secondary vegeta-
tion and urban areas should be interpreted more cautiously due to their high spatial uncertainty.

Sensitivity analysis of BII models and validation of BII maps.  Sensitivity analysis of BII models.  A 
sensitivity analysis of BII models to land use and anthropogenic pressure is essential to ensure the robustness 
of biodiversity modeling and assessment. Biodiversity responses to environmental changes are complex, and 

Fig. 5  Land use fractions of six harmonized land use categories ranging from 0 to 1 (0–100%). An example of a 
land use fraction was calculated from a harmonized land use map in 2020.
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different drivers can affect various aspects of biodiversity in distinct ways53,71. By explicitly evaluating how sen-
sitive abundance and compositional similarity are to land use against human pressures, we can identify which 
key inputs meaningfully contribute to each biodiversity component. Separate models for Ab and Cs were fitted 
using only land use predictors, only human pressures, and compared against the baseline models (or the fitted 
models) that combined both sets of predictors. This revealed that abundance is more sensitive to certain types of 
land use such as primary vegetation, cropland, and urban areas, whereas compositional similarity is influenced 
more by human pressures including population density, proximity to roads, and travel time. Correlation tests of 
simulated BII indicated that BII from the fitted models correlates better with the land use model (r = 0.95) than 
the human pressure model (r = 0.92). Land use variables are better at capturing the overall biodiversity intactness 
patterns reflected in the fitted model, particularly for secondary vegetation, cropland, pasture, and urban lands. 
This sensitivity analysis emphasized the critical role of land use in biodiversity modeling, while also demonstrat-
ing that incorporating human pressures provides valuable complementary information for efficiently capturing 
biodiversity patterns5. Uncertainty in land use fractions can propagate through the BII model: the highest uncer-
tainty in BII estimates occurred in urban landscapes, followed by secondary vegetation and cropland. In contrast, 
propagated uncertainty for pasture and primary vegetation remained comparatively low, reflecting more stable 
BII estimates for these landscapes.

Fig. 6  Biodiversity intactness index (BII) in 2020 and examples in (A) Northeast America, (B) Amazon,  
(C) Mekong Delta, (D) Eastern Australia, (E) Northeast China, (F) Nile Delta in Egypt, (G) Southern Africa, 
and (H) Western Europe. Green represents intact ecosystems and red indicates ecosystems with high human 
intervention.
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Validation of BII maps.  The spatial BII maps were generated using a combination of abundance and compo-
sitional similarity models and validated against three independent reference datasets: the updated global bio-
diversity intactness in 2005 [BII(S)]72, high-resolution BII maps from 2017–2020 [BII(G)]39, and Biodiversity 
Habitat Index (BHI) for 202073. The earlier BII datasets also used the PREDICTS database to model BII in 
discrete years, while BHI estimated the retention of terrestrial species diversity under habitat loss, degradation, 

Column Description

FAOID FAO numeric country code

ISO3 ISO 3166-1 alpha-3 country code

Biome Name of terrestrial biome based on the Worldwide Fund (WWF) classification system

Region Full name of country or territory

Region_SHO Short country or territory name

UN_Region United Nations regional classification (e.g., Eastern Europe)

Continent Continent Name (e.g., Africa)

Year Year of assessment (2000 – 2020)

Category Product category (i.e., Crop or Livestock)

Item_FAO FAO numeric code for product

Item_BIIFP Internal numeric code aligned with BII footprint to separate dairy and meat production (e.g., 1 is dairy and 2 is meat, Table S4)

Item_Name Common product name (e.g., Wheat, Barley)

Unit Unit of measurement (km2) characterizes spatial footprint area

Value The estimated area (km2) of BII loss footprint attributed to a specific product in a specific biome, country, and year.

Table 4.  Data columns of BII loss footprint data and descriptions.

Fig. 7  Correlation of land use fractions between HHLU and downscaled LHU across different levels and spatial 
aggregations. Error bars show 95% CI.

Fig. 8  Average uncertainty in land use fractions across land use types. Error bars illustrate 95% confidence 
intervals.
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and fragmentation pressures, providing a complementary perspective on biodiversity integrity. Similar to land 
use fractions, validation for BII also examined consistency across pixel- and country-levels, examining how 
spatial aggregation influences the correlation strength and reliability of BII estimates. BII maps were compared 
with reference datasets from corresponding years after resampling to match the modeled BII spatial resolution 
(~2.5 km) and all tested aggregation scales. At the pixel level, correlations for BII(G) were highest, ranging from 
0.837 to 0.845, followed by BHI (0.780–0.812) and BII(S) (0.639–0.707). At the country level, BHI showed the 
highest correlations (0.877–0.884), followed by BII(G) (0.756–0.758) and BII(S) (0.557–0.560), with confidence 
intervals reflecting moderate reliability. At both the pixel and country levels, the correlations remained relatively 
stable as aggregation increased, indicating consistent spatial agreement regardless of pixel aggregation (Fig. 9). 
The biodiversity models emphasized the prominence of land use in BII estimation. As BII(S) was generated 
using the LUH data, inconsistencies between LUH-based land use and our land use fractions may propagate 
into BII maps, leading to lower consistency with BII(S). However, our simulated BII maps still exhibited high 
consistency with BII(G) and BHI, indicating the strong alignment of the simulated BII with these reference 
datasets. Additionally, correlations at the country level were generally lower than those at the pixel level, under-
scoring spatial heterogeneity and the influence of data aggregation, which can dilute biodiversity signals when 
synthesizing raster-based data to the country-level summaries.

Moreover, a comparison at biome/ecoregion level was also provided to furnish additional perspectives and 
to assist users in discerning regions where the dataset may be confidently applied and regions where more 
cautious interpretation may be necessary (Figure S874 and Table S5). The comparison revealed varying con-
sistency across biomes. Forested biomes, such as Tropical and subtropical moist broadleaf forests (r = 0.805), 
Temperate conifer forests (r = 0.662), and Boreal forests/taiga (r = 0.662), Mangroves (r = 0.641), Temperate 
broadleaf and mixed forests (r = 0.634), Deserts and xeric shrublands (r = 0.632), Tropical and subtropical dry 
broadleaf forests (r = 0.613), had high averaged correlations among the references, indicating strong agreement 
in these biomes. In contrast, open and less vegetated biomes, e.g., tundra (r = 0.323) and temperate grasslands, 
savannas, and shrublands (r = 0.428) exhibited lower correlations. In general, the BII data from Gassert et al.39 
tend to report higher values for individual and global biomes, which may lead to overestimation or more opti-
mistic assessments of biodiversity integrity in contrast to the BHI which offers a more conservative evaluation. 
The BII maps generated in this study show moderate to high levels of consistency and reliability with at least 
one reference dataset, which is expected to balance the limitations present in existing datasets. Overall, these 
validations demonstrated that our BII maps are both consistent and reliable, offering a potential improvement 
on current datasets for further biodiversity integrity assessments.

Validation of spatial crop and livestock distribution maps.  Spatial maps of SPAM and GLW gen-
erated by the extended methods were underwent rigorous validation to ensure both quantitative accuracy and 
spatial agreement. These maps redistributed FAO-reported data to specific locations and regions based on crop 
and livestock probability distributions. Since ordinary correlation assessments at the national level cannot cap-
ture spatial homogeneity, we employed the spatial correlation test in terra R-package to assess spatial agreement 
between the reference and generated maps, explicitly accounting for spatial heterogeneities between map pairs75. 
Additionally, the results were evaluated using Pearson correlation coefficients. Validation was conducted by com-
paring SPAM data for three reference years (2005, 2010, and 2020) and GLW data for 2010, 2015, and 2020. The 
validation results, summarized in Fig. 10, illustrate spatial correlation coefficients (r) as two-dimensional metrics: 
average values across all years and minimum values for specific crop and livestock categories. Both SPAM and 
GLW maps produced through the redistribution methods showed strong spatial agreement with reference data 
across all years, with mean correlation coefficients of 0.914 ± 0.056 for SPAM and r = 0.960 ± 0.045 for GLW. 
Although spatial heterogeneity varies among individual categories, all demonstrate moderate to highly reliability. 
Notably, tropical fruits (TROF, 2020) and plantain (PLNT, 2005) exhibited the lowest correlation coefficients at 
0.734 and 0.760, respectively, while horses (HORS, 2015) showed the lowest spatial agreement among livestock 
categories (r = 0.860) (Fig. 10).

Fig. 9  Correlation of simulated BII and reference datasets at pixel and country levels across different spatial 
aggregation scales.
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Usage Notes
The validated annual HHLU dataset represents one of the first efforts to produce a consistent and high-resolution 
global land-use dataset. It addresses uncertainties present in earlier datasets and is dedicated supporting robust 
biodiversity assessments. The land-use definitions align seamlessly with the established LUH classification sys-
tem, ensuring broad applicability across biodiversity and ecological integrity studies. Furthermore, land-use 
fractions serve as an intermediate resource, facilitating a wide range of ecological analyses.

The annual BII maps demonstrate strong concordance with existing datasets and have the potential to resolve 
inconsistencies in biodiversity intactness observations across certain biomes. These maps offer valuable support 
for a wide range of applications, including environmental research, policymaking, and conservation initiatives. 
By analyzing temporal trends, researchers can identify regions experiencing biodiversity decline or recovery, 
evaluate the effectiveness of conservation strategies, and investigate the complex interactions between biodi-
versity and environmental drivers, such as urbanization, deforestation, mining extraction, climate change, and 
land use dynamics.

The BII footprint on specific crops and livestock items has been meticulously disaggregated across 154 crop 
types, 09 livestock categories, 14 biomes, and 193 countries and territories over the past two decades. This data-
set allocates BII loss footprint directly attributable to agricultural production, integrating the most current avail-
able data while filling critical gaps—such as buffalo populations in North America and the distinction between 
dairy and meat livestock sectors—that are absent from the FAO dataset. This detailed data empowers research-
ers and policymakers to aggregate and analyze diverse factors underlying terrestrial biodiversity integrity loss 
driven by agricultural production systems. It not only reflects trends in biodiversity integrity but also illuminates 
the dynamic of changes occurring within biomes, countries, and production sectors, enabling identification of 
key drivers of biodiversity decline and informing targeted conservation and sustainable consumption strategies. 
Some key trends can be observed in the summary in Fig. 11 below.

By providing essential biodiversity footprint data, this resource enables the precise identification of 
local impacts from agricultural production on terrestrial ecosystems, highlights biodiversity hotspots at 
greatest risk, helps prioritize conservation efforts, and enables projections of future trends under varying 
land use and consumption scenarios. Moreover, the dataset facilitates comprehensive footprint analyses 
by quantifying biodiversity loss impacts on human activities, industries, and international trade through 
integration with multi-regional input/output models. This approach reveals the ecological costs and respon-
sibilities embedded within global supply chains, uncovers hidden ecological inequalities among countries 
and regions, and supports the development of demand-side policies to promote more sustainable produc-
tion and consumption patterns. Incorporating this footprint data into international trade frameworks can 
further drive sustainable trade policies by offering a standardized metric to assess the biodiversity impacts 
of imports and exports, thereby encouraging trade agreements that balance biodiversity conservation with 
economic growth.

It is important to note that certain datasets (e.g., global road network and travel time) were treated as 
static drivers due to the difficulty of obtaining consistent temporal datasets. As the expansion of road and 
transportation infrastructures can substantially contribute to a loss of biodiversity intactness, this static 
assumption may lead to an underestimation of overall biodiversity decline. However, because these factors 
are assumed to be globally consistent, relative comparison between regions and countries remains valid and 
unaffected. Moreover, it should be noted that the dataset represents consolidated regional units rather than 
strictly adhering to current geopolitical boundaries. This consolidation resulted from data harmonization 
over the observed period, facilitating the alignment of FAO datasets and other data sources during the disag-
gregation processes.

Data availability
Supporting data used to harmonize land-use dataset and generate BII maps can be accessed directly from the 
respective data sources. All datasets produced in this work are openly available for education and non-commercial 
purposes via the project data archive on Figshare (https://doi.org/10.6084/m9.figshare.28303442)69.

Fig. 10  Spatial correlation between the reference and generated maps of SPAM and GLW. Circles and triangles 
represent crops and livestock items, respectively. Abbreviations of SPAM are shown in Table S3. GLW 
livestock categories: BUFF = Buffalo, SHEE = Sheep, GOAT = Goat, HORS = Horses, CATT = Cattle.
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Fig. 11  Summary of BII loss footprints: (A) overall trend of total BII loss footprint on crops and livestock from 
2000 to 2020, and comparisons between average footprint and overall trend on (B) biomes, (C) countries/
territories, and (D) commodities. The footprint from the livestock sector has gradually declined, whereas 
the footprint associated with crop production has increased persistently over time. Increases in biodiversity 
footprints were observed across all biomes, with particularly notable growth in tropical and subtropical moist 
broadleaf forests, temperate broadleaf and mixed forests, and tropical and subtropical grasslands, savannas, and 
shrublands. At the country level, footprints increased in nearly all countries, except for Australia and Mongolia, 
where substantial declines were observed. Among commodities, the most significant increases in footprints 
were associated with maize, wheat, and meat cattle, while a notable decrease was seen for meat sheep.
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Code availability
All datasets and statistical models in this work were generated using R (version 4.4.1) and Python (version 3.11.5). 
No custom code or programs were developed during the generation and processing of these datasets.
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