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A B S T R A C T   

Urban development is dominated by various factors ranging from natural and social factors to accessibility to 
urban infrastructures. Urbanization in an unfavorable location in terms of the above factors can create difficulties 
with connecting to the city center, adjacent urban areas, and wastage of land resources. In the context of Can Tho 
city, a newly developing city, its urban expansion process and factors affecting urbanized possibility were 
explored by applying multiple logistic regression (MLR) on Landsat imagery and accessible geospatial data 
sources. The analyses confirmed a significant urban expansion in the entire city between 2003 and 2017, mostly 
in central districts and along the Hau river. The primary dynamics of urban expansion were explained by an 
efficient MLR (Area Under Receiver Operating Characteristic – AUROC = 0.803), based on six factors related to 
accessibility to transportation, developed urban areas, industrial zone, elevation, soil type, and population. A 
simulation of urbanization probability revealed that most remote areas with low accessibility to urban in
frastructures are difficult to urbanize with a probability of less than 40%. In contrast, the high potentially ur
banized regions expanded the already built-up areas in riverside districts. Our findings facilitate the 
understanding of urbanized driven factors in the newly developing delta cities for long-term planning when 
urbanization remains under control.   

1. Introduction 

Vietnam has been developing at a high urbanization rate, especially 
in the last four decades (Chen et al., 2014; Fan et al., 2019). Urbaniza
tion facilitates reviving the sluggish economy after political instability, 
reducing poverty, and increasing household welfare (Glewwe, 2004; 
Kafy et al., 2021b). It intensively propels the national development and 
economic growth through converging capital, reinforcing trade between 
urban and rural areas, creating jobs, and providing multiple services 
(Sheng, 2017; Sheng and Mohit, 2001; Turok, 2016). Even though fast 
urbanization provides numerous development opportunities, exces
sively rapid urbanization and the lack of a master plan can induce 
several burdens that threaten a city’s sustainable development related to 

social aspects, overload of urban infrastructures, and environmental 
degradation (Peng et al., 2010; Sintusingha, 2011). The transformation 
from agricultural land to built-up areas leads to economic structure 
changes, unemployment, job transition, urban poverty, and social di
vision, especially to illiterate farmers, older people, and women in rural 
areas (Heurlin, 2019; Shouhai, 2015). The urban development in Viet
nam faces an overload of infrastructures caused by the synergistic 
impact of intense urbanization, immigration, non-synchronous infra
structure, and inconsequential urban planning (Chu and Nguyen, 2017; 
Chu and Thi, 2017). For instance, traffic congestion occurs after working 
hours when a large number of vehicles are present on narrow roads 
designed for the current population. A shortage of clean water and 
electricity is another problem, along with industrial development and 
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urban expansion (Nguyen et al., 2021b). 
Moreover, the urban environment is vulnerable under dense pop

ulations, the bustle of diverse economic sectors, land cover disturbance, 
and even environmental awareness of urban residents. Most cities in 
developing countries are facing a weakness of sanitation systems that is 
likely to affect soil and water environments (McFarlane, 2019). The 
urban air environment is polluted by transportation and anthropogenic 
activities (Hien et al., 2020; Pham et al., 2019; Phan et al., 2020). 
Meanwhile, the urban environment shifts itself through landscape 
changes. Temperature increase is known as the urban heat island (UHI) 
effect (Kafy et al., 2021a; US EPA, 2008), and has been broadly inves
tigated in association with urban expansion in the last few years (Can 
et al., 2019; Estoque et al., 2017; Estoque and Murayama, 2017; Mohan 
and Kandya, 2015; Son et al., 2017; Tran et al., 2017; Xinmin et al., 
2017). 

The problems mentioned above originate from incorrect planning 
and a lack of insight and rationality among the related elements. For 
example, planning a new urban area may benefit urban spatial planning 
because it does not depend on the previous construction. Nevertheless, 
this decision is costly because of land clearance, environmental assess
ment, and completely new infrastructures; otherwise, the project will be 
ineffective and asynchronous with other urban areas (Nguyen et al., 
2021c). The favorable position for urbanization, therefore, needs to be 
identified for sustainable urban development. 

Can Tho city was established as one of the five national municipal
ities in 2004. After that, the city has rapidly developed, and the popu
lation increased from 611 thousand (2005) to 1,175 thousand (2015). 
The city’s urban resident percentage climbed by 1.1% from 2005 and 
reached 3.7% in 2015 (United Nations, 2015). In terms of spatial ur
banization, a case study in three center districts (Ninh Kieu, Cai Rang, 
and Binh Thuy) carried out by remote sensing indicated that the built-up 
areas extended approximately 3,500 ha over 20 years (Son and Thanh, 
2018). The annual growth rate of urban areas revealed a fast urban 
expansion process and this rate soared from 2005 onward (Pham et al., 
2010; Trung and Vu, 2018). The city is in the distribution region of acid 
sulfate soil of the Vietnamese Mekong Delta (VMD), yet alluvial soil that 
favors agricultural cultivation, a crucial strength of the city, is limited in 
the area (IRMC, 2003). 

Furthermore, cities in the lower Mekong Delta, especially in Can Tho 
city, are at risk of urban flooding given by the combined impact of low 
altitude, land subsidence, and sea-level rise (Apel et al., 2016; Chinh 
et al., 2016; Huong and Pathirana, 2013; Long et al., 2020). Although 
Can Tho is a newly developing city with a small urban scale compared to 
Ho Chi Minh and Ha Noi city, it has shown essential signs of urban 
environmental changes owing to unfavorable planning, such as green 
space reduction and temperature increase (Diep et al., 2018; Son and 
Thanh, 2018). For all the reasons mentioned above, conditions in the 
region for urban building need to be explored. 

The logistic regression is utilized to estimate the probability of an 
event with a categorical dependent variable. More explicitly, the target 
variable for the logistic regression has a dual aspect, e.g., failure/suc
cess, win/loss, and delicious/tasteless. Practically, logistic regression 
has been successfully applied in studying asthma morbidity caused by 
urbanization (Ponte et al., 2018), perception of air pollution (Leung 
et al., 2019), housing abandonment (Gao et al., 2017), and urban growth 
dynamics with a contribution from Cellular Automata Markov (Siddiqui 
et al., 2018; Wu et al., 2019). The utilization of logistic regression is for 
its potential in detecting impact factors of urbanization and 
non-urbanization regions. 

This study aims to contribute a set of substantial factors controlling 
the urbanization process and detecting potential locations for urban 
expansion in a developing city in the Vietnamese Mekong Delta. Spe
cifically, this paper attempts to (1) detect the urbanization areas in Can 
Tho city during 2003–2017 by applying remote sensing-based analysis, 
(2) assess the impact of considered factors on urbanization ability, and 
(3) estimate urbanization probability using multiple logistic regression. 

In order to present these objectives, this paper is organized as follows: 
Section 2 below describes the study area, the dataset used for this 
research, and the methods for, in turn, achieving the stated objectives. 
The results and discussions are presented in Section 3, and a conclusion 
ends the paper in section 4. 

2. Materials and methods 

2.1. Study area description 

Can Tho city is located at the center of the VMD on the west side of 
the Hau river, i.e., a distributary of the Mekong river in Vietnam. The 
total area is about 1,401 km2 stretching from 105◦13′38" – 105◦50′35′′

East and 9◦55′08" – 10◦19′38′′ North and divided into nine adminis
trative units, consisting of 5 urban districts and 4 rural counties (Fig. 1). 
Can Tho belongs to a semi-open flooded area and includes three types of 
geomorphology: natural dike of Hau river, semi-open flood plain of Long 
Xuyen quadrangle, and flat delta (CTP, 2017; Long et al., 2020; Van 
Long and Cheng, 2018). The typical elevation is 2–5 m and gradually 
decreases from Northeast to Southwest. Two main soil groups were 
found regarding primary soil types: alluvial soil (84%) and acid sulfate 
soil (16%) (CTP, 2017). The Hau river and dense canal system supply 
approximately 35 million m3/year, jointly facilitated agricultural 
cultivation (e.g., 115,000 ha of rice fields and fruit orchards). 

Besides this agricultural strength, the city also focuses on industrial 
production, especially for aquatic processing, rice milling, and agricul
tural supplies. Presently, there are two industrial areas: Tra Noc indus
trial area (300 ha) and Hung Phu industrial area (471 ha). The 
government plans three other industrial parks with a total area of up to 
1,600 ha in Thot Not district, O Mon and north of O Mon district. These 
are all promising developments to boost overall growth and urbaniza
tion (CTP, 2017). 

2.2. Data 

2.2.1. Landsat satellite images 
Landsat satellite images were the primary data source for obtaining 

and assessing urban areas. The research collected two free cloud Landsat 
scenes of Collection 1 (level 1) at path/row of 125/53. The Landsat 7- 
ETM and Landsat 8 images were acquired on 27 August 2003 and 29 
January 2017, respectively. Although these two scenes were acquired in 
two different seasons, this seasonal dissimilarity is expected only to in
fluence the identification of paddy fields and similar land cover types. 
The urban identification is unaffected due to its independence of season. 
One Landsat 5-TM on 23 November 2003 was also collected to fix the 
gap error due to trouble on the Scan Line Corrector (SLC) of Landsat 7- 
ETM (Andrefouet et al., 2003). The remotely sensed data have a medium 
resolution (30 m) and cloudlessness in the study area. It was therefore 
possible to process and extract urban areas for further analyses. 

2.2.2. Spatial data on potential factors 
The study gathered available data on the factors expected to influ

ence urbanization. Data formats and sources are shown in Table 1 
below. Population density is in the raster format, illustrating the number 
of people living in an area unit, 1,000 m of pixel size. Altitude data is 
ALOS PALSAR DEM (Advanced Land Observing Satellite – Phased Array 
type L-band Synthetic Aperture Radar – Digital elevation model), a 
secondary elevation data generated by radar satellite image L-band. 
Transportation network, hydrological system, and industrial areas are 
vector data presenting the spatial distribution of major roads, rivers and 
canals, and industrial area locations. 

Furthermore, we used the soil paper-map from the Integrated Re
sources Mapping Center (IRMC) to supply soil type information 
throughout the study area. The map was generated based on information 
in 2003 for Can Tho province (i.e., a former province that included Can 
Tho city and Hau Giang province). Firstly, the image was georeferenced 
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and digitized on a GIS (geographical information system) platform. 
There are seven soil types following the Vietnam soil classified system 
(VSCS), namely Gley-alluvial soil (50.79%), alluvial soil (17.35%), 
disturbed soil (15.71%), active acid sulfate soil at shallow layers 
(12.12%), active acid sulfate soil at deep layers (2.39%), alluvial soil 
(1.39%), and potential acid sulfate soil at deep layers (0.27%). The soil 
types were subsequently reviewed and scored from 7 to 1 to prioritize 
urban development when they are not suitable for agricultural cultiva
tion and each soil type’s present status. For example, the gley-alluvial 
soil was given 1 point because it is distributed in the fields with a long 
tradition of double-triple rice crops, without alum, so it is the most 
suitable soil for paddy fields. Conversely, the disturbed soil is currently 
covered by perennial plants, special-use land (e.g., construction, trans
portation, and residential), which is given a 7 because it seems unfit for 
agricultural purposes (IRMC, 2003). Likewise, the grades of acid sulfate 
soil at shallow layers, acid sulfate soil at deep layers, potential acid 
sulfate soil at deep layers, alluvial soil with various layers, and alluvial 
soil were classified from 6 to 2, respectively. 

2.3. Methodology 

2.3.1. Urban classification 
Landsat images were first processed through preprocessing steps, 

including atmospheric correction and reflectance conversion. Digital 
numbers (DN) are converted to reflectance values, the ratio between 
reflected radiation from the Earth surface and emitted energy, and 
approximated using rescaling coefficients as Equation (1). Meanwhile, 

the atmospheric correction removes the adverse effects of the atmo
sphere on satellite images. Landsat 7-ETM + images contain line-missing 
data due to Scan Line Corrector (SLC) failure since 2003. In this study, 
Landsat 7 gaps were filled by another clear-sky scene of Landsat 5 
captured on 23 November 2003 without any gap-missing errors to avoid 
heterogeneity owing to land cover changes. 

ρ′

λ =MρQcal + Aρ (1)  

where ρ′

λ is top of atmosphere reflectance, Qcal is quantized and cali
brated pixel value (DN), MρandAρare band-specific multiplicative and 
additive rescaling factors, respectively. 

Next, the multi-band images were analyzed using the principal 
component analysis (PCA) to reduce data dimensions but enhance the 
spectral signal. Consequently, it preserves critical information to 
improve classified accuracy and successfully extract land cover features 
(Balázs et al., 2018; Jiaju, 1988; Koutsias et al., 2009; Loughlin, 1991; 
Yang and Du, 2017). The input for PCA is the multiple band image, 
including visible bands, near-infrared (NIR), and short-wave infrared 
(SWIR) bands, and the output is three information-rich bands. 

Though supervised algorithms (e.g., maximum likelihood and 
random forest) show various benefits in isolating classes for landcover 
mapping, classifying all types is not the core goal considered within this 
research. We mainly concentrated on the robust extraction of urban 
areas, a central object in the study. The unsupervised classification was 
successfully utilized in wetland detection, mangrove mapping, vegeta
tion type classification, and crop type mapping (Cissell and Steinberg, 

Fig. 1. (a) Can Tho city location in Mekong Delta and truth points for assessing classification accuracy, and (b) Landsat 8-OLI natural color composite (RGB = bands 
4, 3, 2) with district boundary. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 

Table 1 
Spatial data representing impact factors on urbanization.  

Data Factor Scope Scale Format Source 

Administrative map in 2012 Administrative boundary, center 
location 

Province 1:50,000 Image Environment and Natural Resources Department in Can 
Tho 

ALOS PALSAR Digital elevation model 
(DEM) 

Elevation Global 12.5 m Raster https://search.asf.alaska.edu 

Industrial area Accessibility Country  Vector https://vietnam.opendevelopmentmekong.net 
Hydrological system Accessibility Country  Vector https://download.geofabrik.de/asia/vietnam.html 
Population data in 2003 Population density Global 1 km Raster https://landscan.ornl.gov 
Soil classification (paper map) Soil type District 1:50,000 Image Integrated Resources Mapping Center 
Transportation network Accessibility Country  Vector https://vietnam.opendevelopmentmekong.net  
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2019; Li et al., 2019; Mandinyenya et al., 2020; Wang et al., 2019). The 
unsupervised algorithm automatically groups pixels purely based on 
spectral information. It therefore limits subjectivity due to manual visual 
interpretation. Furthermore, the accuracy of unsupervised classifiers 
changes relatively little compared to supervised classifiers (e.g., it does 
not exceed 10%) (Hazir and Muda, 2020). 

Meanwhile, the unsupervised classification requires no field training 
data (Wang et al., 2019). Therefore, an integration of PCA and unsu
pervised classification is an efficient approach for urban extraction. We 
applied an unsupervised classifier of the K-Means algorithm, which is 
applicable for a target classification, e.g., forest (Oduro Appiah et al., 
2020; Tsai et al., 2019) and flood inundation (Borah et al., 2018), with 
15 clusters preprocessed for this study. Subsequently, the classes were 
combined to generate a land cover map based on general land cover 
types, e.g., agriculture, bare soil, perennial plants, urban areas, and 
water bodies. This study’s primary land cover type is an urban area, 
which was automatically classified into several classes due to imagery 
characteristics. For instance, the urban area includes high buildings, 
dense residential areas, and sparse houses that are visually dissimilar in 
satellite imagery, color, and texture. 

Finally, the classification was evaluated using renowned coefficients 
of overall accuracy and kappa coefficient (Congalton and Green, 2009; 
FAO, 2016). In order to focus on the study’s main objects and economize 
field survey expenses, we evaluated the classified maps on two classes of 
urban areas and non-urban areas (i.e., this class comprises the remaining 
four land cover types) (Murray et al., 2012; Nguyen et al., 2021a; Son 
and Thanh, 2018). The evaluating metrics were estimated by the 
confusion matrix, which was constructed by 200 truth points (i.e., 100 
points in the urban area and 100 points in the non-urban area). The truth 
points were randomly collected from field surveys and very high reso
lution (VHR) images on Google Earth (Kaliraj et al., 2017; Nguyen et al., 
2021a; Rimal et al., 2020; Zhou et al., 2016). 

2.3.2. Urban expansion analysis 
Due to the diversity of administrative areas between districts and 

urban density (UD), a normalized ratio of the urban and total area 
compares the urban concentration among districts (Boori et al., 2015; 
Makboul et al., 2015). Besides, the annual growth rate (AGR) is an in
dicator for evaluating urbanized speed, which measures the yearly 
urban gain ratio and is calculated by equation (2) (Boori et al., 2015; 
Xiao et al., 2006). 

AGR=
UAn+i − UAi

nTAn+i
=

UDn+i − UDi

n
(2)  

where AGR is the annual growth rate; UAn+i is the urban area at the 
concerned time; UAi is the urban area at the initial time; n is time in
terval; TAn+i is the total area; UDn+i and UDi are the urban density at the 
concerned time and initial time, respectively. 

2.3.3. Development of logistic model to estimate urbanization probability 

2.3.3.1. Data preparation. Random sampling: The administrative area is 
about 1,400 km2, which is approximately 1.56 million pixels on Landsat 
imagery (30-m resolution). It is considered a limited population. A 
theoretical sample size for this population with a margin of error (e =
5%) is approximately 400 points, which is relatively less than the total 
area of urbanization and non-urbanization (Yamane, 1967). Extracting 
all considered pixels on the entire image is prone to failure because it 
often exceeds the hardware capacity. Therefore, this study randomly 
selected 2,000 points for urbanization and non-urbanization and divided 
them evenly by 1,000 points for each type. This number is higher than 
the suggested size from the Yamane equation, but it is not oversized for 
handling. The scattered points were numbered into two code-groups, in 
which 1 (one) and 0 (zero) represent urbanized and non-urbanized 
points, respectively. 

Euclidean distance calculation and rasterization: To analyze factors 
affecting urbanization, raster data can be directly used for data extrac
tion to serve further analysis. The vector data, however, needs to be 
transformed into secondary data. We used Euclidean distance (ED) for 
the effects of transportation networks, natural hydrological systems, 
industrial zones, town centers (district People’s Committee) and already 
developed urban areas. More explicitly, the distance to already devel
oped urban areas is defined as the shortest distance from a considered 
point to the nearest urban areas at a base time. The ED was broadly 
applied in GIS-related research, such as sustainability analysis and 
moveable time optimization (Alharbi, 2015; Alzamili et al., 2015; Rimal 
et al., 2019; Villacreses et al., 2017; Zhou et al., 2019). The Euclidean 
distance was calculated by the vector layers and converted to raster form 
with a pixel size of 30-m. 

2.3.3.2. Data extraction. The concerned raster layers of eight consid
ered factors (Fig. A2) were then extracted as values at sampling points 
using the Point Sampling Tool. The tool sequentially retrieves DN values 
of raster layers at the point location and adds values into the attribute 
table. The attribute table was then exported to the data table (*.csv) for 
logistic analysis. 

2.3.3.3. Logistic analysis and validation. Logistic regression was utilized 
to explore contributing factors to urbanization in a Mekong Delta city. 
Foremost, the simple logistic regression on each factor was tested to 
detect the influence tendency. These simple logistic regressions were 
evaluated by probability and AIC (Akaike information criterion), which 
estimates prediction error and provides a standard for model selection. 
The low AIC value represents a better model with less prediction error. A 
multiple logistic regression (Equation (3)) was then applied to 70% of 
the dataset, while 30% of the remaining data was supplied for model 
validation. 

P=
eα+β1x1+β2x2+...+βkxk

1 + eα+β1x1+β2x2+...+βkxk
(3)  

where P is the probability; e is the natural logarithm (~2.718); α is the 
interception; β is the weight of the development factor; and x is the 
variables in the multiple logistic regression. 

The logistic model was practically validated by collating prediction 
values from the proposed logistic regression and testing dataset. Area 
Under Receiver Operating Characteristic (AUROC) is a criterion for 
model evaluation. The ROC curve is generated by the true positive rate 
(TPR) against the false positive rate (FPR). A best-fit model has AUROC 
approaching 1.0. The model’s performance might vary between 
different training and test datasets. The model validation was repeated 
1,000 times on different training and testing datasets to limit this bias 
and increase subjectivity. Mean values of AUROC were then utilized for 
model assessment. 

3. Results and discussions 

3.1. Accuracy of urban classification 

The land cover maps and urban areas were obtained through an in
tegrated PCA approach and unsupervised classification (Fig. A1), which 
proved the capability of this combined method in urban feature 
extraction to produce a highly accurate performance. All accuracy 
standards were higher than 90% for both years, in which the highest 
percentage reached 98.9% (Table 2). The Kappa coefficients of urban 
class in 2003 and 2017 achieved 0.89 and 0.94, respectively. The result 
in 2003 had lower reliability than the result in 2017 due to data missing 
from SLC-failure rather than seasonal differences between two Landsat 
images. Even though the image quality was much improved by the gap- 
filling task, the data quality and the existence of bare soil jointly reduces 
classification efficiency. The misclassification was attributed to the 
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spectral similarity between bare-soil (non-urban areas) and urban areas, 
especially in the peri-urban areas (Nguyen et al., 2021a). These land 
covers reflect more radiation and even have a high temperature in the 
satellite imagery. Yet the classifications generally attained a strong 
agreement level, with over 90% of data being reliable (McHugh, 2012). 

3.2. Urbanization trends in the 2003–2017 period 

The classification indicated that urban areas covered 3,639 ha 
(2003) and 13,044 ha (2017) corresponding to 2.5% and 9.1% of the 
provincial area, respectively. The increase was equivalent to AGR =
18.5% per year in the entire city. Generally, the urban area is spatially 
distributed in two primary hubs along the Hau river (a distributary of 
the Mekong river) and follows major roads (Fig. 2). The first enormous 
center was in the district cluster of Ninh Kieu – Binh Thuy – Cai Rang, 

located in the southeastern city with a dense concentration of down
town, educational institutions, and administrative agencies. The 
aggregated urban area in this region accounted for 44.7% of the total 
urban area, but this proportion fell to 33.6% in 2017. The remaining 
center was mainly in the northern Thot Not district, where the Vam Cong 
bridge project went through. This project was aimed to link developing 
centers in the MKD, support the national highway project (NHP), and 
break the traffic monopoly of Can Tho city in connecting to western 
provinces. Since its master planning in 2010, the project has led to the 
dynamics of land transformation and the real estate market in Thot Not. 

Table 3 presents parameters for conveniently evaluating urban 
concentration. The urban area indeed expanded in all districts, in which 
the most increased districts were Thot Not (2,025 ha), Co Do (1,331 ha), 
and Vinh Thanh (1,229 ha). These places are mostly peri-urban areas, 

Table 2 
Mapping accuracy assessment of urban classification in 2003 and 2017.  

Year Classification Reference 
∑

User User’s 
accuracy (%) 

Urban 
area 

Non-urban 
area 

2003 Urban area 99 10 109 90.83 
Non-urban area 1 90 91 98.90 
∑

Producer 100 100 200  
Producer’s 
accuracy (%) 

99.0 90.0   

Overall accuracy 
(%)    

94.50 

Kappa coefficient    0.89 
2017 Urban area 96 2 98 97.96 

Non-urban area 4 98 102 96.08 
∑

Producer 100 100 200  
Producer’s 
accuracy (%) 

96.0 98.0   

Overall accuracy 
(%)    

97.00 

Kappa coefficient    0.94  

Fig. 2. Spatial distribution of urban area in Can Tho in (a) 2003, (b) 2017, and (c) urban changes during 2003–2017.  

Table 3 
Urbanization parameters of built-up area, urban density in 2003 and 2017, and 
annual growth rate (percent per year) over the observed period.  

District Area (Hectares) Density 
(Percent) 

Increase AGR (% 
per year)  

2003 2017 2003 2017 Area Density  

Thoi Lai 216 1,045 0.8 3.9 828 3.1 0.22 
Phong 

Dien 
75 579 0.6 4.6 504 4.0 0.29 

Vinh 
Thanh 

545 1,775 1.8 5.8 1,229 4.0 0.29 

Co Do 329 1,660 1.0 5.2 1,331 4.2 0.30 
O Mon 335 1,069 2.6 8.2 734 5.7 0.40 
Cai Rang 282 1,145 4.2 16.9 864 12.8 0.91 
Binh 

Thuy 
538 1,531 7.7 21.9 993 14.2 1.01 

Thot Not 513 2,537 4.3 21.1 2,025 16.8 1.20 
Ninh 

Kieu 
806 1,702 27.4 57.9 897 30.5 2.18 

Entire 
city 

3,639 13,044 2.5 9.0 9,405 6.5 0.46  
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with favorable conditions for urban sprawl. Contrarily, dense urban 
areas in both time points were found in modern towns such as Ninh Kieu, 
Binh Thuy, Cai Rang, Thot Not, O Mon (only in 2003), in which Ninh 
Kieu was always the densest urban district with 27.4% and 57.9% in 
turn. The values were compared to the entire city’s overall value to 
evaluate whether a district’s indicator is low or high. Likewise, urban
ized speed was assessed by using the annual rate. Ninh Kieu was still the 
fastest urbanization with 2.18% per year. Thot Not achieved 1.2% per 
year. Binh Thuy and Cai Rang yearly grew approximately 1.01% and 
0.91%. The riverside counties developed faster since they are located on 
the main transport route connecting the southern provinces of the Hau 
river with the ability to trade goods easily. Conversely, the western 
district complex was slowly urbanized. It was less than 0.3% per year, 
with its immense paddy fields. 

3.3. Logistic probability model 

3.3.1. Descriptive statistics 
Fig. 3 shows the principal differences between urbanization and non- 

urbanization points on eight significant elements expected to influence 
urbanization. The distance-related elements of urbanization were 
smaller than the non-urbanized values. On the contrary, the factors of 
elevation, population, and soil score had higher values for urbanization 
compared to non-urbanization. More clearly, the statistical parameters 
from the descriptive statistics, including mean, standard deviation (SD), 
and maximum (Max) values, significantly differed from the rest of the 
group. The minimum (Min) values of the two groups were not sub
stantially altered for a few factors (e.g., distance to transportation, river, 
developed urban areas, population, and soil score). However, the 
distinction came from a frequency distribution, in which urbanization 
concentrated tightly toward the minimum value for distance factors and 
vice versa for non-urbanization. 

3.3.2. Development of urbanization probability by multiple logistic 
regression 

The independent effects on the urbanization of variables and their 
tendency (i.e., increasing or decreasing) were initially tested using 

simple logistic regression and evaluated based on probability and AIC 
(Akaike’s Information Criteria). The smaller the AIC value, the more 
significant the factor is. Fig. 4 shows that the most influential models 
were isolated contribution from distance to developed urban areas (AIC 
= 2,417.6), elevation (AIC = 2,477.5), distance to industrial areas (AIC 
= 2,536.3), and distance to transportation (AIC = 2,578.9). Conversely, 
the probability model of soil score presented the least impact on ur
banization. Regarding the impact tendency, the distances were inversely 
proportional to the urbanization probability, about 70% except for 
distance to river, where the highest probability was approximately 60%. 
In other words, the highly urbanized regions are inclined to be adjacent 
to the old built-up area, transportation, and near the industrial areas. 
Elevation, population, and soil positively contributed to the probability, 
in which the highest urbanization probability of elevation and popula
tion was about 80%. The difference between urbanized and non- 
urbanized possibilities built by soil score was relatively small about 
35% (non-urbanization) and 60% (urbanization). That means urbani
zation favorably developed in a place with high elevation, dense pop
ulation, and reasonable soil type. 

The isolated impacts are integrated into a multiple logistic regression 
for more accurately explaining the urbanized possibility. Table 4 pre
sents the result of regression analysis, in which the best fit model has a 
contribution of 6 out of 8 variables. The contributors include distance to 
transportation, distance to developed urban areas, distance to industrial 
areas, elevation, population, and soil score. Distance to the river was 
dismissed in the target model because it has multicollinearity with road 
systems. Owning to an intertwined canal system, waterway has been an 
essential means of transportation. The roads then have been built to 
connect centers and remote regions, mainly following the former roads 
and pathways along the rivers, therefore roads and canals are often in 
parallel. Similarly, the urbanization ability was unexplainable by dis
tance to the center. The significant urbanization form throughout the 
city was linear spreading along the streets rather than urban sprawl from 
a specific center, which went on mostly in the great city center at Ninh 
Kieu district. 

With this integration, the multiple regression shows that the 6-vari
able model is the best fit model with AIC = 1,398 ± 21.58. This value 

Fig. 3. Boxplot illustrates the overall differences between urbanization and non-urbanization data points in investigated factors (a) distance to center, (b) distance to 
transportation, (c) distance to river, (d) distance to developed urban areas, (e) distance to industrial areas, (f) elevation, (g) population, and (h) soil score. Note: NU =
Non-urbanization, U = Urbanization. 
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was relatively smaller against the values of separated variables. Similar 
to the simple logistic regression, the three distance-related variables 
adversely affected the urbanization expressed through negative co
efficients. This regression can be interpreted as an area that will become 
an urban area when it has dense population density, high altitude, near 
an industrial area, road, previous urban area, and favorable soil type. 
Fig. 5 depicts AUROC lines generated from training, testing data, and all 
considered data points, which achieved 0.823, 0.803, and 0.818, 
respectively. Generally, the receiver operating characteristic (ROC) 
curves are smooth and AUROC > 0.8. It implies the model’s efficiency at 
obtaining relatively high accuracy. Therefore, the obtained multiple 
logistic regression can be applied to estimate urbanization probability. 

Fig. 6 depicts the urbanized possibility throughout Can Tho city 
except for the already built-up area. The most urbanized area has a 
probability of about 96.6% adjacent to the developed urban area. The 
potentially urbanized regions (higher than 80%) account for 5,994 ha 

Fig. 4. Simple logistic regression between urbanization probability and considered factor, (a) distance to center, (b) distance to transportation, (c) distance to river, 
(d) distance to developed urban areas, (e) distance to industrial areas, (f) elevation, (g) population, and (h) soil score. Note: 0 represents non urbanization probability 
and 1 represents urbanization probability. 

Table 4 
Estimated coefficients and significance level of examined variables in the mul
tiple logistic regression.  

Considered factors Estimated 
coefficient 

Statistical 
significance 

Intercept 3,794 × 10− 4 *** 
Distance to town center − 0.1487 × 10− 4 ns 
Distance to transportation − 2.904 × 10− 4 *** 
Distance to river − 80.49 × 10− 4 ns 
Distance to developed urban areas − 5.346 × 10− 4 *** 
Distance to industrial areas − 48.03 × 10− 4 *** 
Elevation 890.9 × 10− 4 *** 
Population 3.991 × 10− 4 * 
Soil score 1,974 × 10− 4 *** 

Note: *** and * symbols present the statistical significance level at 0.001 and 0.01; ns 
is not statistically significant and eliminated from the final multiple logistic regression. 

Fig. 5. A plot presenting AUROC lines from a typical training – validation data and all considered data points.  
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divided into two spatial patterns: expansion along the riverbank and 
inland linear spreading. Contrarily, the distant regions in Co Do and 
Thoi Lai districts are restricted in urbanization, at only 0.2%. The ratio 
between low urbanized areas is much greater than the high urbanization 
possibility. For instance, areas with a 20% probability are seven times 
higher than the potential urbanization area mentioned above. 

3.4. Discussions 

3.4.1. Urban expansion dynamics 
The factors affecting urban expansion were investigated and divided 

into three main categories. These are natural conditions (elevation, soil 
type), social condition (population density), and infrastructures 
(approaching roads, industrial factories, and developed urban areas). 
The topographic aspects such as elevation, slope, and aspect strongly 
influence urban sprawl in high altitudes, plateaus, and mountainous 
areas (Li et al., 2018; Pijanowsld et al., 2009). The terrain of MKD is low, 
flat, and relatively homogeneous. It was therefore simplified by one 
factor called elevation. It did not much significantly affect urban dis
tribution compared to other elements. The elevation differences, 
although not much significant, has a particular effect on residential area 
distribution. Urban development in high terrain is indeed vital since the 
MKD urban areas have been experiencing urban flooding. The situation 
will be exacerbated in the rainy season by the integrated contribution 
from the complete dike system upstream of the Vietnam Mekong river 
(An Giang province), land subsidence, sea-level rise, and heavy rain 
(Huong and Pathirana, 2013; Tri et al., 2013; Takagi et al, 2015, 2016). 
Besides, the urban areas of Can Tho city have developed under the 
balancing and priority of qualified soil for agricultural strength such as 
fruit specialties in Phong Dien district and rice in Co Do and Vinh Thanh 
district linking to the Long Xuyen Quadrangle (the enormous Viet
namese rice bowl). The preferred soil types for agriculture are fertile 
alluvial or acid sulfate soil in the deep layers. Meanwhile, disturbance 
soil and acid sulfate soil in shallow layers are unprofitably used for 
agricultural cultivation, a potential land fund for residential areas. 

Population density and proximity to major roads have been broadly 
studied in urbanization research (Deng et al., 2008; Longyu et al., 2009) 
relating to urbanization on demographic aspects such as population 

growth and accessibility to the essential urban infrastructures. The in
frastructures, including electricity networks, water supply systems, and 
connecting roads, are performed at the first stage of a new residential 
project. Therefore, a favorable region for urban expansion has easy 
accessibility to these infrastructures. Besides, we additionally consid
ered proximity to the already built-up area and industrial areas, and the 
results revealed a positive association. The urban area developed based 
on inheritance and gradually expanded outside. The neighborhood of 
industrial parks was examined for whether it would be more urbanized 
compared to further areas. The formation of industrial areas encourages 
general economic development and local transformation through land 
cover change to serve the industrial infrastructures, factories, ware
houses, and internal roads. The concentrated industry project attracts 
numerous migrant workers. Hence, the surrounding areas rapidly 
develop to meet workers’ needs, such as rental rooms, markets, food 
restaurants, and entertainment services. The economic factors (e.g., 
Gross Domestic Product - GDP) were not considered in this study due to 
data limitation, yet the proximity to industrial parks partly represents 
the economic growth. 

3.4.2. Implication for urban planning, land assessment, and sustainable 
cultivation 

By adopting the logistic urbanization model with six proposed var
iables, we will be able to predict the distribution of potential urbani
zation areas. Despite the low quality of variables caused by data 
availability, the model effectiveness was high and was expected to be 
more accurate with qualified data like soil maps within this study. An 
example of urbanization in 2025 and 2030 was achieved by simple 
prediction using cumulative area estimation (Fig. 7). More explicitly, the 
urban area will be expanded to a region holding 73.53% (18,204 ha) in 
2025 and 70.67% (21,534 ha) in 2030. 

Implication for urbanization prediction: the research confirmed the 
logistic model’s capability to assess dual-result events. This will be a 
foundation for urbanized prediction to serve master planning and urban 
planning. High potential urbanization areas will be determined to 
develope a built-up area and low potential areas will be prioritized for 
agriculture after considering all potential barriers. The logistic model 
can also explore sustainable regions for plants (e.g., rice, rubber, coffee, 

Fig. 6. Spatial distribution of urbanization probability aggregated by the multiple logistic regression and affecting factors. Urban areas and waterbodies were 
excluded from this map. 
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and sugar cane). Moreover, the traditional land evaluation methods 
identify the land elements (e.g., flooding depth, soil type, and cultiva
tion farming) and overlap to find the land unit and suitable regions. This 
research framework is expected to go beyond these applications to 
adjust the land evaluation approach and for faster and more efficient 
decision making. 

5. Conclusions 

Our study investigated the urban expansion in 2003 and 2017 and 
built a probability model to simulate urbanized potential based on 
multiple logistic regression. The primary input data for regression is the 
urban area obtained by image processing, which achieved relatively 
high accuracies. After 14 years, the urban area increased by 2.5 times in 
2003, which was about 3,639 ha. The chain of riverside counties is 
densely concentrated, and it developed faster than those inland districts. 
The yearly urbanized speed of Ninh Kieu during this period was 2.18% 
per year, and the urban area exceeded half of the total area at the end of 
the period. 

Among the eight examined variables, the proximity to the center and 
river were not meaningful in the multiple logistic regression for 
explaining urbanized dynamics in the entire Can Tho city. The distance- 
related factors inversely contributed to the probability model and vice 
versa for the remaining factors. This study additionally added the dis
tance to the previous urban and industrial areas for consideration. The 
concentrated industry park encouraged urbanization through a socio- 
economic synthesis process, including worker migration. The rela
tively high AUROC standard (AUROC = 0.803) revealed the efficiency of 
a six-variable probability model. The application of this model shows 
that the majority of the city area is medium-low urbanized. There is 
about 44,253 ha of low urbanization probability (lower than 30%) 
against 5,994 ha of high potential (greater than 80%). The research 
suggests a research framework for potentially adjusting traditional land 
evaluation habits and predicting urbanization to serve sustainable urban 
planning. 
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Appendix 

Fig. 7. Simulation of urbanization area in 2025 and 2030 adopted by the logistic probability model in (a) entire Can Tho city, (b) enlarged map of Ninh Kieu-Binh 
Thuy districts. 
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Fig. A1. Can Tho land cover maps in 2003 and 2017 obtained by Landsat imagery classification.   
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Fig. A2. Distribution maps of (a) distance to ward/district People’s Committee, (b) distance to transportation, (c) distance to river, (d) distance to developed urban 
areas, (e) distance to industrial zones, (f) elevation, (g) population, (h) soil type and score. 
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